-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog.py
167 lines (141 loc) · 5.63 KB
/
log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from torch.utils.tensorboard import SummaryWriter
from collections import defaultdict
import json
import os
import shutil
import torch
import numpy as np
from termcolor import colored
# Borrows from https://github.com/MishaLaskin/rad/blob/master/logger.py
FORMAT_CONFIG = {
'rl': {
'train': [
('episode', 'E', 'int'), ('step', 'S', 'int'),
('duration', 'D', 'time'), ('episode_reward', 'R', 'float'),
('batch_reward', 'BR', 'float'), ('actor_loss', 'A_LOSS', 'float'),
('critic_loss', 'CR_LOSS', 'float')
],
'eval': [('step', 'S', 'int'), ('episode_reward', 'ER', 'float'), ('episode_reward_test_env', 'ERTEST', 'float')]
}
}
class AverageMeter(object):
def __init__(self):
self._sum = 0
self._count = 0
def update(self, value, n=1):
self._sum += value
self._count += n
def value(self):
return self._sum / max(1, self._count)
class MetersGroup(object):
def __init__(self, file_name, formating):
self._file_name = file_name
if os.path.exists(file_name):
os.remove(file_name)
self._formating = formating
self._meters = defaultdict(AverageMeter)
def log(self, key, value, n=1):
self._meters[key].update(value, n)
def _prime_meters(self):
data = dict()
for key, meter in self._meters.items():
if key.startswith('train'):
key = key[len('train') + 1:]
else:
key = key[len('eval') + 1:]
key = key.replace('/', '_')
data[key] = meter.value()
return data
def _dump_to_file(self, data):
with open(self._file_name, 'a') as f:
f.write(json.dumps(data) + '\n')
def _format(self, key, value, ty):
template = '%s: '
if ty == 'int':
template += '%d'
elif ty == 'float':
template += '%.04f'
elif ty == 'time':
template += '%.01f s'
else:
raise 'invalid format type: %s' % ty
return template % (key, value)
def _dump_to_console(self, data, prefix):
prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green')
pieces = ['{:5}'.format(prefix)]
for key, disp_key, ty in self._formating:
value = data.get(key, 0)
pieces.append(self._format(disp_key, value, ty))
print('| %s' % (' | '.join(pieces)))
def dump(self, step, prefix):
if len(self._meters) == 0:
return
data = self._prime_meters()
data['step'] = step
self._dump_to_file(data)
self._dump_to_console(data, prefix)
self._meters.clear()
class Logger(object):
def __init__(self, log_dir, use_tb=True, config='rl', train_log_interval=100):
self._log_dir = log_dir
if use_tb:
tb_dir = os.path.join(log_dir, 'tb')
if os.path.exists(tb_dir):
shutil.rmtree(tb_dir)
self._sw = SummaryWriter(tb_dir)
else:
self._sw = None
self._train_mg = MetersGroup(
os.path.join(log_dir, 'train.log'),
formating=FORMAT_CONFIG[config]['train']
)
self._eval_mg = MetersGroup(
os.path.join(log_dir, 'eval.log'),
formating=FORMAT_CONFIG[config]['eval']
)
self._train_log_interval = train_log_interval
def _try_sw_log(self, key, value, step):
if self._sw is not None:
self._sw.add_scalar(key, value, step)
def _try_sw_log_image(self, key, image, step):
if self._sw is not None:
assert image.dim() == 3
# grid = torchvision.utils.make_grid(image.unsqueeze(1))
self._sw.add_image(key, image, step)
def _try_sw_log_video(self, key, frames, step):
if self._sw is not None:
frames = torch.from_numpy(np.array(frames))
frames = frames.unsqueeze(0)
self._sw.add_video(key, frames, step, fps=30)
def _try_sw_log_histogram(self, key, histogram, step):
if self._sw is not None:
self._sw.add_histogram(key, histogram, step)
def log(self, key, value, step, n=1):
assert key.startswith('train') or key.startswith('eval')
if key.startswith('train') and step % self._train_log_interval:
return
if type(value) == torch.Tensor:
value = value.item()
self._try_sw_log(key, value / n, step)
mg = self._train_mg if key.startswith('train') else self._eval_mg
mg.log(key, value, n)
def log_param(self, key, param, step):
self.log_histogram(key + '_w', param.weight.data, step)
if hasattr(param.weight, 'grad') and param.weight.grad is not None:
self.log_histogram(key + '_w_g', param.weight.grad.data, step)
if hasattr(param, 'bias'):
self.log_histogram(key + '_b', param.bias.data, step)
if hasattr(param.bias, 'grad') and param.bias.grad is not None:
self.log_histogram(key + '_b_g', param.bias.grad.data, step)
def log_image(self, key, image, step):
assert key.startswith('train') or key.startswith('eval')
self._try_sw_log_image(key, image, step)
def log_video(self, key, frames, step):
assert key.startswith('train') or key.startswith('eval')
self._try_sw_log_video(key, frames, step)
def log_histogram(self, key, histogram, step):
assert key.startswith('train') or key.startswith('eval')
self._try_sw_log_histogram(key, histogram, step)
def dump(self, step):
self._train_mg.dump(step, 'train')
self._eval_mg.dump(step, 'eval')