-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanager.py
361 lines (261 loc) · 15.5 KB
/
manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch
import torch.nn.functional as F
import logging
import numpy as np
from torch import nn
from utils.functions import restore_model, save_model, EarlyStopping
from tqdm import trange, tqdm
from data.utils import get_dataloader
from utils.metrics import AverageMeter, Metrics, OOD_Metrics, OID_Metrics
from transformers import AdamW, get_linear_schedule_with_warmup
from sklearn.neighbors import LocalOutlierFactor
from itertools import cycle
import pandas as pd
import itertools
from scipy.stats import norm as dist_model
from utils.mt import generate_context
from utils.functions import softmax_cross_entropy_with_softtarget
from evaluation.oos_cls import doc_classification
__all__ = ['MAG_BERT']
class MAG_BERT:
def __init__(self, args, data, model):
self.logger = logging.getLogger(args.logger_name)
# self.device, self.model = model.device, model.model
# self.optimizer, self.scheduler = self._set_optimizer(args, self.model)
mm_data = data.data
mm_dataloader = get_dataloader(args, mm_data)
self.train_dataloader, self.eval_dataloader, self.test_dataloader = \
mm_dataloader['train'], mm_dataloader['dev'], mm_dataloader['test']
self.device, self.model = model.device, model._set_model(args)
self.optimizer, self.scheduler = self._set_optimizer(args, self.model)
self.args = args
self.criterion = nn.CrossEntropyLoss()
self.metrics = Metrics(args)
self.oid_metrics = OID_Metrics(args)
self.ood_metrics = OOD_Metrics(args)
if args.train:
self.best_eval_score = 0
else:
self.model = restore_model(self.model, args.model_output_path, self.device)
def _set_optimizer(self, args, model):
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr = args.lr, correct_bias=False)
num_train_optimization_steps = int(args.num_train_examples / args.train_batch_size) * args.num_train_epochs
num_warmup_steps= int(args.num_train_examples * args.num_train_epochs * args.warmup_proportion / args.train_batch_size)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_train_optimization_steps)
return optimizer, scheduler
def _train(self, args):
early_stopping = EarlyStopping(args)
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
self.model.train()
loss_record = AverageMeter()
for step, batch in enumerate(tqdm(self.train_dataloader, desc="Iteration")):
text_feats = batch['text_feats'].to(self.device)
video_feats = batch['video_feats'].to(self.device)
audio_feats = batch['audio_feats'].to(self.device)
label_ids = batch['label_ids'].to(self.device)
speaker_ids = batch['speaker_ids'].to(self.device)
u_mask = batch['umask'].to(self.device)
text_lengths = torch.sum(text_feats[:, :, 1], dim=2, keepdim=True)
audio_lengths = batch['audio_lengths'].to(self.device)
video_lengths = batch['video_lengths'].to(self.device)
text_feats = generate_context(args, text_feats, speaker_ids, u_mask, text_lengths, args.context_len)
audio_feats = generate_context(args, audio_feats, speaker_ids, u_mask, audio_lengths, args.context_len, modality = 'audio')
video_feats = generate_context(args, video_feats, speaker_ids, u_mask, video_lengths, args.context_len, modality = 'video')
text_f1, text_f2 = text_feats.shape[-2], text_feats.shape[-1]
text_feats = text_feats.view(-1, text_f1, text_f2)
label_ids = label_ids.view(-1)
u_mask = u_mask.view(-1).bool()
text_feats = text_feats[u_mask]
label_ids = label_ids[u_mask]
audio_f1, audio_f2 = audio_feats.shape[-2], audio_feats.shape[-1]
audio_feats = audio_feats.view(-1, audio_f1, audio_f2)
audio_feats = audio_feats[u_mask]
video_f1, video_f2 = video_feats.shape[-2], video_feats.shape[-1]
video_feats = video_feats.view(-1, video_f1, video_f2)
video_feats = video_feats[u_mask]
is_ids = torch.nonzero(label_ids != args.ood_label_id)
oos_ids = torch.nonzero(label_ids == args.ood_label_id)
if len(is_ids) > len(oos_ids):
main_e = is_ids
cycle_e = cycle(oos_ids)
else:
main_e = oos_ids
cycle_e = cycle(is_ids)
batch_size = args.select_bs
main_e_batches = [main_e[i:i+batch_size] for i in range(0, len(main_e), batch_size)]
cycle_e_batches = [list(itertools.islice(cycle_e, batch_size)) for _ in range(batch_size)]
cycle_e_batches = torch.stack([torch.tensor(batch) for batch in cycle_e_batches])
for step, (m_e, c_e) in enumerate(zip(main_e_batches, cycle_e_batches)):
m_select_text_feats = text_feats[m_e].squeeze(1) if text_feats[m_e].ndim == 4 else text_feats[m_e]
m_select_video_feats = video_feats[m_e].squeeze(1) if video_feats[m_e].ndim == 4 else video_feats[m_e]
m_select_audio_feats = audio_feats[m_e].squeeze(1) if audio_feats[m_e].ndim == 4 else audio_feats[m_e]
m_select_label_ids = label_ids[m_e].squeeze(1) if label_ids[m_e].ndim == 2 else label_ids[m_e].unsqueeze(0)
if len(c_e) != 0:
c_select_text_feats = text_feats[c_e]
c_select_video_feats = video_feats[c_e]
c_select_audio_feats = audio_feats[c_e]
c_select_label_ids = label_ids[c_e]
with torch.set_grad_enabled(True):
m_outputs = self.model(m_select_text_feats, m_select_video_feats, m_select_audio_feats)
m_logits = m_outputs['mm']
if len(c_e) != 0:
c_outputs = self.model(c_select_text_feats, c_select_video_feats, c_select_audio_feats)
c_logits = c_outputs['mm']
if m_select_label_ids[0] != args.ood_label_id:
id_loss = self.criterion(m_logits, m_select_label_ids)
if len(c_e) != 0:
ood_loss = softmax_cross_entropy_with_softtarget(c_logits, args.num_labels, self.device)
else:
id_loss = self.criterion(c_logits, c_select_label_ids)
if len(c_e) != 0:
ood_loss = softmax_cross_entropy_with_softtarget(m_logits, args.num_labels, self.device)
if len(c_e) != 0:
loss = id_loss + args.alpha * ood_loss
else:
loss = id_loss
self.optimizer.zero_grad()
loss.backward()
loss_record.update(loss.item(), m_select_label_ids.size(0))
self.optimizer.step()
self.scheduler.step()
train_outputs = self._get_outputs(args, mode = 'train')
eval_outputs = self._get_outputs(args, mode = 'eval')
inputs = {
'y_logit_train': train_outputs['y_logit'],
'y_true_train': train_outputs['y_true'],
'y_true_test': eval_outputs['y_true'],
'y_logit_test': eval_outputs['y_logit']
}
# eval_y_logit = eval_outputs['y_logit']
# eval_y_true = eval_outputs['y_true']
# eval_y_pred = eval_outputs['y_pred']
# mu_stds = self.cal_mu_std(train_outputs['y_logit'], train_outputs['y_true'], args.num_labels)
# eval_y_pred = self.classify_doc(args, eval_y_logit, mu_stds)
# eval_score = self.oid_metrics(eval_y_true, eval_y_pred)['oid_f1']
eval_score = doc_classification(args, inputs)['oid_f1']
eval_results = {
'train_loss': round(loss_record.avg, 4),
'eval_score': round(eval_score, 4),
'best_eval_score': round(early_stopping.best_score, 4),
}
self.logger.info("***** Epoch: %s: Eval results *****", str(epoch + 1))
for key in eval_results.keys():
self.logger.info(" %s = %s", key, str(eval_results[key]))
early_stopping(eval_score, self.model)
if early_stopping.early_stop:
self.logger.info(f'EarlyStopping at epoch {epoch + 1}')
break
self.best_eval_score = early_stopping.best_score
self.model = early_stopping.best_model
if args.save_model:
self.logger.info('Trained models are saved in %s', args.model_output_path)
save_model(self.model, args.model_output_path)
def batch_iteration(self, args, dataloader):
total_labels = torch.empty(0,dtype=torch.long).to(self.device)
total_preds = torch.empty(0,dtype=torch.long).to(self.device)
total_logits = torch.empty((0, args.num_labels)).to(self.device)
total_features = torch.empty((0, args.feat_size)).to(self.device)
for batch in tqdm(dataloader, desc="Iteration"):
text_feats = batch['text_feats'].to(self.device)
video_feats = batch['video_feats'].to(self.device)
audio_feats = batch['audio_feats'].to(self.device)
label_ids = batch['label_ids'].to(self.device)
speaker_ids = batch['speaker_ids'].to(self.device)
u_mask = batch['umask'].to(self.device)
text_lengths = torch.sum(text_feats[:, :, 1], dim = 2, keepdim = True)
audio_lengths = batch['audio_lengths'].to(self.device)
video_lengths = batch['video_lengths'].to(self.device)
text_feats = generate_context(args, text_feats, speaker_ids, u_mask, text_lengths, args.context_len)
audio_feats = generate_context(args, audio_feats, speaker_ids, u_mask, audio_lengths, args.context_len, modality = 'audio')
video_feats = generate_context(args, video_feats, speaker_ids, u_mask, video_lengths, args.context_len, modality = 'video')
text_f1, text_f2 = text_feats.shape[-2], text_feats.shape[-1]
text_feats = text_feats.view(-1, text_f1, text_f2)
label_ids = label_ids.view(-1)
u_mask = u_mask.view(-1).bool()
text_feats = text_feats[u_mask]
audio_f1, audio_f2 = audio_feats.shape[-2], audio_feats.shape[-1]
audio_feats = audio_feats.view(-1, audio_f1, audio_f2)
audio_feats = audio_feats[u_mask]
video_f1, video_f2 = video_feats.shape[-2], video_feats.shape[-1]
video_feats = video_feats.view(-1, video_f1, video_f2)
video_feats = video_feats[u_mask]
label_ids = label_ids[u_mask]
select_bs = args.select_bs
st = 0
flag = False
while True:
ed = st + select_bs
if ed >= u_mask.shape[0]:
flag = True
ed = u_mask.shape[0]
select_text_feats = text_feats[st:ed]
select_video_feats = video_feats[st:ed]
select_audio_feats = audio_feats[st:ed]
select_label_ids = label_ids[st:ed]
flag_id = torch.any(select_label_ids != args.ood_label_id).item()
flag_ood = torch.any(select_label_ids == args.ood_label_id).item()
if flag_id or flag_ood:
with torch.set_grad_enabled(False):
outputs = self.model(select_text_feats, select_video_feats, select_audio_feats)
logits, features = outputs['mm'], outputs['h'][:, 0]
total_logits = torch.cat((total_logits, logits))
total_labels = torch.cat((total_labels, select_label_ids))
total_features = torch.cat((total_features, features))
st += select_bs
if flag:
break
return total_logits, total_labels, total_features
def _get_outputs(self, args, mode = 'eval', show_results = False, test_ind = False):
self.model.eval()
if mode == 'eval':
total_logits, total_labels, total_features = self.batch_iteration(args, self.eval_dataloader)
elif mode == 'train':
total_logits, total_labels, total_features = self.batch_iteration(args, self.train_dataloader)
elif mode == 'test':
total_logits, total_labels, total_features = self.batch_iteration(args, self.test_dataloader)
total_probs = F.softmax(total_logits.detach(), dim=1)
total_maxprobs, total_preds = total_probs.max(dim = 1)
y_logit = torch.sigmoid(total_logits.detach()).cpu().numpy()
y_pred = total_preds.cpu().numpy()
y_true = total_labels.cpu().numpy()
y_prob = total_maxprobs.cpu().numpy()
y_feat = total_features.cpu().numpy()
if test_ind:
outputs = self.metrics(y_true[y_true != args.ood_label_id], y_pred[y_true != args.ood_label_id])
else:
outputs = self.oid_metrics(y_true, y_pred, show_results = show_results)
outputs.update(
{
'y_prob': y_prob,
'y_logit': y_logit,
'y_true': y_true,
'y_pred': y_pred,
'y_feat': y_feat
}
)
return outputs
def _test(self, args):
test_results = {}
ind_test_results = self._get_outputs(args, mode = 'test', show_results = True, test_ind = True)
if args.train:
test_results['best_eval_score'] = round(self.best_eval_score, 4)
test_results.update(ind_test_results)
if args.test_ood:
ind_train_outputs = self._get_outputs(args, mode = 'train')
inputs = {
'y_logit_train': ind_train_outputs['y_logit'],
'y_true_train': ind_train_outputs['y_true'],
'y_true_test': ind_test_results['y_true'],
'y_logit_test': ind_test_results['y_logit']
}
oid_test_results = doc_classification(args,inputs)
test_results.update(oid_test_results)
return test_results