-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_IRL.py
219 lines (129 loc) · 3.96 KB
/
main_IRL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import sys
sys.path.append('./IRL/GradientIRL')
sys.path.append('./IRL')
sys.path.append('utils')
import numpy as np
import gym
import matplotlib.pyplot as plt
import readtrajectory as read
#import estimatepolicy as estim
import utils.gibbspolicy as gp
import utils.reward as rew
import gradientIRL as irl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from SelfPaced import Self_Paced
env = gym.make('MountainCar-v0')
T = 500
data_path = 'data/data_long_sarsa.txt'
write_path_girl = 'trained_models/reward_params_girl_sarsa.txt'
write_path_self_paced = 'trained_models/reward_params_girl_self_paced_sarsa.txt'
def plot_reward(reward,title):
X = 50
V = 50
sp =reward.env.observation_space
x = np.linspace(sp.low[0], sp.high[0], X)
v = np.linspace(sp.low[1], sp.high[1],V)
x, v = np.meshgrid(x, v)
r = np.zeros([X, V])
fig = plt.figure()
ax = fig.gca(projection='3d')
for i in range(X):
for j in range(V):
xi = i / (X-1) * (sp.high[0] - sp.low[0]) + sp.low[0]
vj = j / (V-1) * (sp.high[1] - sp.low[1]) + sp.low[1]
r[i, j] = reward.value([xi, vj], 1)
# =============================================================================
# r[i,j] = reward.basis([xi,vj],0)
# =============================================================================
ax.plot_surface(x, v, r.T, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_title(title)
plt.show()
# Read the data
data = read.read(data_path)
# Estimate the policy parameters
policy = gp.GibbsPolicy(env, T, 2.)
print('fitting policy to data...')
#trace = policy.fit(data, 200)
#print(trace[-1])
#print(policy.get_theta())
#plt.plot([t[0] for t in trace])
#plt.plot([t[2] for t in trace])
#plt.show()
policy.set_theta(np.array([-18, -1, 18]))
for i in range(10):
policy.episode()
env.close()
print('solving the IRL problem:')
dx = 20
dv = 20
reward = rew.Reward(dx, dv,env)
L = dx*dv
# def plot(p):
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# for idx in range(L):
# j = int(idx % dv)
# i = int((idx - j)/dv)
# ax.scatter(i, j, p[dv*i+j], c='r')
# plt.show()
#
# plot(reward.params)
# =============================================================================
'''
print('')
l = []
for i in range(N):
r = reward.basis([1.8/N * i - 0.6, 0.0], 15, 15)
l.append(r)
plt.plot(l)
plt.show()
'''
girl = irl.GIRL(reward, policy)
trajs = girl.import_data(data)
#girl.compute_jacobian()
#print(girl.jacobian)
alphas = girl.solve(trajs)
print(alphas)
# plt.plot(alphas)
# =============================================================================
#plt.show()
#plot(alphas)
reward.set_params(alphas)
#
reward.export_to_file(write_path_girl)
reward.import_from_file(write_path_girl)
plot_reward(reward,'GIRL algorithm')
reward_sp = rew.Reward(dx, dv,env)
f_sp = irl.GIRL(reward_sp, policy)
K0=10e3
eps=10e-15 #not working for now
mu=0.5
girl_self_paced = Self_Paced(f_sp,K0,eps,mu)
trajs = girl_self_paced.import_data(data)
# =============================================================================
# alphass = girl_self_paced.fit1(trajs)
# =============================================================================
alphass = girl_self_paced.fit2(trajs)
#plt.plot(alphas)
#plt.show()
#plot(alphas)
print(len(alphass))
print(alphass[-1])
reward_sp.set_params(alphass[-1])
reward_sp.export_to_file(write_path_self_paced)
#reward.import_from_file(write_path)
for i in range(len(alphass)):
reward_sp.set_params(alphass[i])
plot_reward(reward_sp,'Self-Paced GIRL algorithm : iteration %d' % (i))
'''
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for i in range(X):
for j in range(V):
xi = i / (X-1) * 1.8 - 0.6
vj = j / (V-1) * 0.14 - 0.07
ax.scatter(i, j, reward.value([xi, vj], 1), c='r')
plt.show()
'''