-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1664 lines (1568 loc) · 113 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.5.55">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="author" content="Taimur Khan">
<meta name="dcterms.date" content="2024-07-28">
<meta name="keywords" content="Air quality, Deep learning, Sentinel-5P">
<title>Smogseer: A Convolutional LSTM model for forecasting air quality from Sentinel-5P data</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js" integrity="sha512-bLT0Qm9VnAYZDflyKcBaQ2gg0hSYNQrJ8RilYldYQ1FxQYoCLtUjuuRuZo+fjqhx/qtq/1itJ0C2ejDxltZVFg==" crossorigin="anonymous"></script><script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script src="site_libs/quarto-contrib/glightbox/glightbox.min.js"></script>
<link href="site_libs/quarto-contrib/glightbox/glightbox.min.css" rel="stylesheet">
<link href="site_libs/quarto-contrib/glightbox/lightbox.css" rel="stylesheet">
<script async="" src="https://hypothes.is/embed.js"></script>
<script>
window.document.addEventListener("DOMContentLoaded", function (_event) {
document.body.classList.add('hypothesis-enabled');
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" integrity="sha512-c3Nl8+7g4LMSTdrm621y7kf9v3SDPnhxLNhcjFJbKECVnmZHTdo+IRO05sNLTH/D3vA6u1X32ehoLC7WFVdheg==" crossorigin="anonymous"></script>
<script type="application/javascript">define('jquery', [],function() {return window.jQuery;})</script>
<meta name="citation_title" content="Smogseer: A Convolutional LSTM model for forecasting air quality from Sentinel-5P data">
<meta name="citation_abstract" content="The South Asian Smog denotes a recurring annual occurrence of heightened levels of air pollution marked by elevated levels of air contaminants, reduced visibility, and significant socio-economic impacts. These Extreme Smog Events predominantly occur in the northwestern regions of the Indo-Gangetic Plains (IGP) during the months from November to February. Since 2016, their frequency and pervasiveness have led to their colloquial local reference as &amp;quot;the fifth season". Inhabitants of cities like Lahore, Amritsar, Faisalabad, Multan, and Delhi experience outbursts of extremely hazardous air quality levels during this period. In the last decade, there has been an increase in air pollution sources while crop residue burning, changing weather patterns, and motor vehicles have greatly contributed to the increased frequency and intensity of heightened smog events. However, forecasting of the Extreme Smog Events in South Asia remains elusive as monitoring efforts can help mobilise timely efforts to mitigate conditions that drive the smog. In this study, I use five-day air constituent data from Sentinel-5P level 2 remote sensing product predict hightened aerosol events using Convolutional Long-Short Term Memory neueral network model. The predictor for heightened smog is the UV (Ultraviolet) Aerosol Index at 340-380 nm. The results show that the Aerosol Index can be forecasted at a five-day interval with a Meas Squared Error of ~0.0018 and a loss of ~0.3995, indicating that while Smogseer can predict heightened smog events, the model can be further improved by incorporating additional data sources and refining the model architecture.
">
<meta name="citation_keywords" content="Air quality,Deep learning,Sentinel-5P">
<meta name="citation_author" content="Taimur Khan">
<meta name="citation_publication_date" content="2024-07-28">
<meta name="citation_cover_date" content="2024-07-28">
<meta name="citation_year" content="2024">
<meta name="citation_online_date" content="2024-07-28">
<meta name="citation_language" content="en">
<meta name="citation_reference" content="citation_title=Convolutional LSTM network: A machine learning approach for precipitation nowcasting;,citation_author=Xingjian Shi;,citation_author=Zhourong Chen;,citation_author=Hao Wang;,citation_author=Dit-Yan Yeung;,citation_author=Wai-Kin Wong;,citation_author=Wang-chun Woo;,citation_publication_date=2015;,citation_cover_date=2015;,citation_year=2015;,citation_volume=28;,citation_journal_title=Advances in neural information processing systems;">
<meta name="citation_reference" content="citation_title=Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data;,citation_author=Ashutosh Kumar;,citation_author=Tanvir Islam;,citation_author=Yoshihide Sekimoto;,citation_author=Chris Mattmann;,citation_author=Brian Wilson;,citation_publication_date=2020;,citation_cover_date=2020;,citation_year=2020;,citation_issue=3;,citation_volume=15;,citation_journal_title=Plos one;,citation_publisher=Public Library of Science San Francisco, CA USA;">
<meta name="citation_reference" content="citation_title=Remembering history with convolutional lstm for anomaly detection;,citation_author=Weixin Luo;,citation_author=Wen Liu;,citation_author=Shenghua Gao;,citation_publication_date=2017;,citation_cover_date=2017;,citation_year=2017;,citation_conference_title=2017 IEEE international conference on multimedia and expo (ICME);,citation_conference=IEEE;">
<meta name="citation_reference" content="citation_title=Keras;,citation_author=François Chollet;,citation_author=others;,citation_publication_date=2015;,citation_cover_date=2015;,citation_year=2015;,citation_publisher=https://keras.io;">
<meta name="citation_reference" content="citation_title=Matplotlib: A 2D graphics environment;,citation_abstract=Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems.;,citation_author=J. D. Hunter;,citation_publication_date=2007;,citation_cover_date=2007;,citation_year=2007;,citation_issue=3;,citation_doi=10.1109/MCSE.2007.55;,citation_volume=9;,citation_journal_title=Computing in Science &amp;amp; Engineering;,citation_publisher=IEEE COMPUTER SOC;">
<meta name="citation_reference" content="citation_title=Array programming with NumPy;,citation_author=Charles R. Harris;,citation_author=K. Jarrod Millman;,citation_author=Stéfan J. Walt;,citation_author=Ralf Gommers;,citation_author=Pauli Virtanen;,citation_author=David Cournapeau;,citation_author=Eric Wieser;,citation_author=Julian Taylor;,citation_author=Sebastian Berg;,citation_author=Nathaniel J. Smith;,citation_author=Robert Kern;,citation_author=Matti Picus;,citation_author=Stephan Hoyer;,citation_author=Marten H. Kerkwijk;,citation_author=Matthew Brett;,citation_author=Allan Haldane;,citation_author=Jaime Fernández Río;,citation_author=Mark Wiebe;,citation_author=Pearu Peterson;,citation_author=Pierre Gérard-Marchant;,citation_author=Kevin Sheppard;,citation_author=Tyler Reddy;,citation_author=Warren Weckesser;,citation_author=Hameer Abbasi;,citation_author=Christoph Gohlke;,citation_author=Travis E. Oliphant;,citation_publication_date=2020-09;,citation_cover_date=2020-09;,citation_year=2020;,citation_fulltext_html_url=https://doi.org/10.1038/s41586-020-2649-2;,citation_issue=7825;,citation_doi=10.1038/s41586-020-2649-2;,citation_volume=585;,citation_journal_title=Nature;,citation_publisher=Springer Science; Business Media LLC;">
<meta name="citation_reference" content="citation_title=Solving the mysteries of lahore smog: The fifth season in the country;,citation_author=Rabia Majeed;,citation_author=Muhammad Shehzaib Anjum;,citation_author=Muhammad Imad-ud-din;,citation_author=Suhaib Malik;,citation_author=Muhammad Naveed Anwar;,citation_author=Bilal Anwar;,citation_author=Muhammad Fahim Khokhar;,citation_publication_date=2024;,citation_cover_date=2024;,citation_year=2024;,citation_volume=5;,citation_journal_title=Frontiers in Sustainable Cities;,citation_publisher=Frontiers Media SA;">
<meta name="citation_reference" content="citation_title=Copernicus sentinel-5P (processed by ESA), TROPOMI level 2 nitrogen dioxide total column products;,citation_author=undefined ESA;,citation_publication_date=2021;,citation_cover_date=2021;,citation_year=2021;,citation_fulltext_html_url=https://doi.org/10.5270/S5P-9bnp8q8;">
<meta name="citation_reference" content="citation_title=DeepESDL-an open platform for research and collaboration in earth sciences;,citation_author=Alicja AND Fomferra Brandt;,citation_publication_date=2023;,citation_cover_date=2023;,citation_year=2023;,citation_conference_title=EGU general assembly conference abstracts;">
<meta name="citation_reference" content="citation_title=Smogseer: A convolutional LSTM for forecasting air quality metrics from sentinel-5P data;,citation_author=Taimur Khan;,citation_publication_date=2024;,citation_cover_date=2024;,citation_year=2024;,citation_publisher=https://doi.org/10.5281/zenodo.13118498;">
<meta name="citation_reference" content="citation_title=TensorFlow: Large-scale machine learning on heterogeneous systems;,citation_author=abadi AND Ashish agarwal AND Paul barham AND Eugene brevdo AND Zhifeng chen AND Craig citro AND Greg s. corrado AND Andy davis AND Jeffrey dean AND Matthieu devin AND Sanjay ghemawat AND Ian goodfellow AND Andrew harp AND Geoffrey irving AND Michael isard AND Yangqing Jia AND Rafal jozefowicz AND Lukasz kaiser AND Manjunath kudlur AND Josh levenberg AND Dandelion mané AND Rajat monga AND Sherry moore AND Derek murray AND Chris olah AND Mike schuster AND Jonathon shlens AND Benoit steiner AND Ilya sutskever AND Kunal talwar AND Paul tucker AND Vincent vanhoucke AND Vijay vasudevan AND Fernanda viégas AND Oriol vinyals AND Pete warden AND Martin wattenberg AND Martin wicke AND Yuan yu AND Xiaoqiang zheng Martin;,citation_publication_date=2015;,citation_cover_date=2015;,citation_year=2015;,citation_fulltext_html_url=https://www.tensorflow.org/;">
</head>
<body>
<header id="title-block-header" class="quarto-title-block default toc-left page-columns page-full">
<div class="quarto-title-banner page-columns page-full">
<div class="quarto-title column-body">
<h1 class="title">Smogseer: A Convolutional LSTM model for forecasting air quality from Sentinel-5P data</h1>
</div>
<div class="quarto-title-meta-container">
<div class="quarto-title-meta-column-start">
<div class="quarto-title-meta-author">
<div class="quarto-title-meta-heading">Author</div>
<div class="quarto-title-meta-heading">Affiliations</div>
<div class="quarto-title-meta-contents">
<p class="author">Taimur Khan <a href="mailto:[email protected]" class="quarto-title-author-email"><i class="bi bi-envelope"></i></a> <a href="https://orcid.org/0000-0001-7833-5474" class="quarto-title-author-orcid"> <img src=""></a></p>
</div>
<div class="quarto-title-meta-contents">
<p class="affiliation">
Helmholtz Centre for Environmental Research - UFZ
</p>
<p class="affiliation">
Leipzig University
</p>
</div>
</div>
<div class="quarto-title-meta">
<div>
<div class="quarto-title-meta-heading">Published</div>
<div class="quarto-title-meta-contents">
<p class="date">July 28, 2024</p>
</div>
</div>
</div>
</div>
<div class="quarto-title-meta-column-end quarto-other-formats-target">
</div>
</div>
<div>
<div class="abstract">
<div class="block-title">Abstract</div>
<p>The South Asian Smog denotes a recurring annual occurrence of heightened levels of air pollution marked by elevated levels of air contaminants, reduced visibility, and significant socio-economic impacts. These Extreme Smog Events predominantly occur in the northwestern regions of the Indo-Gangetic Plains (IGP) during the months from November to February. Since 2016, their frequency and pervasiveness have led to their colloquial local reference as “the fifth season”. Inhabitants of cities like Lahore, Amritsar, Faisalabad, Multan, and Delhi experience outbursts of extremely hazardous air quality levels during this period. In the last decade, there has been an increase in air pollution sources while crop residue burning, changing weather patterns, and motor vehicles have greatly contributed to the increased frequency and intensity of heightened smog events. However, forecasting of the Extreme Smog Events in South Asia remains elusive as monitoring efforts can help mobilise timely efforts to mitigate conditions that drive the smog. In this study, I use five-day air constituent data from Sentinel-5P level 2 remote sensing product predict hightened aerosol events using Convolutional Long-Short Term Memory neueral network model. The predictor for heightened smog is the UV (Ultraviolet) Aerosol Index at 340-380 nm. The results show that the Aerosol Index can be forecasted at a five-day interval with a Meas Squared Error of ~0.0018 and a loss of ~0.3995, indicating that while Smogseer can predict heightened smog events, the model can be further improved by incorporating additional data sources and refining the model architecture.</p>
</div>
</div>
<div>
<div class="keywords">
<div class="block-title">Keywords</div>
<p>Air quality, Deep learning, Sentinel-5P</p>
</div>
</div>
<div class="quarto-other-links-text-target">
<div class="quarto-code-links"><div class="quarto-title-meta-heading">Code Links</div><div class="quarto-title-meta-contents"><span style="padding-right: 0.5em;"><a href="src/data.py"><i class="bi bi-file-code"></i>data.py</a>,</span><span style="padding-right: 0.5em;"><a href="src/smogseer.py"><i class="bi bi-file-code"></i>smogseer.py</a>,</span><span><a href="src/utils.py"><i class="bi bi-file-code"></i>utils.py</a></span></div></div></div> </div>
</header><div id="quarto-content" class="page-columns page-rows-contents page-layout-article toc-left">
<div id="quarto-sidebar-toc-left" class="sidebar toc-left">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#introduction" id="toc-introduction" class="nav-link active" data-scroll-target="#introduction"><span class="header-section-number">1</span> Introduction</a></li>
<li><a href="#data" id="toc-data" class="nav-link" data-scroll-target="#data"><span class="header-section-number">2</span> Data</a>
<ul class="collapse">
<li><a href="#predictor-variables-features" id="toc-predictor-variables-features" class="nav-link" data-scroll-target="#predictor-variables-features"><span class="header-section-number">2.1</span> Predictor variables (features)</a>
<ul class="collapse">
<li><a href="#methane-ch4" id="toc-methane-ch4" class="nav-link" data-scroll-target="#methane-ch4"><span class="header-section-number">2.1.1</span> Methane – CH4</a></li>
<li><a href="#ozone-o3" id="toc-ozone-o3" class="nav-link" data-scroll-target="#ozone-o3"><span class="header-section-number">2.1.2</span> Ozone – O3</a></li>
<li><a href="#sulphur-dioxide-so2" id="toc-sulphur-dioxide-so2" class="nav-link" data-scroll-target="#sulphur-dioxide-so2"><span class="header-section-number">2.1.3</span> Sulphur Dioxide – SO2</a></li>
<li><a href="#carbon-monoxide-co" id="toc-carbon-monoxide-co" class="nav-link" data-scroll-target="#carbon-monoxide-co"><span class="header-section-number">2.1.4</span> Carbon Monoxide – CO</a></li>
<li><a href="#nitrogen-dioxide-no2" id="toc-nitrogen-dioxide-no2" class="nav-link" data-scroll-target="#nitrogen-dioxide-no2"><span class="header-section-number">2.1.5</span> Nitrogen Dioxide – NO2</a></li>
<li><a href="#formaldehyde-hcho" id="toc-formaldehyde-hcho" class="nav-link" data-scroll-target="#formaldehyde-hcho"><span class="header-section-number">2.1.6</span> Formaldehyde – HCHO</a></li>
</ul></li>
<li><a href="#target-variable" id="toc-target-variable" class="nav-link" data-scroll-target="#target-variable"><span class="header-section-number">2.2</span> Target variable</a>
<ul class="collapse">
<li><a href="#aerosol-index-ai-340-380-nm" id="toc-aerosol-index-ai-340-380-nm" class="nav-link" data-scroll-target="#aerosol-index-ai-340-380-nm"><span class="header-section-number">2.2.1</span> Aerosol Index – AI (340-380 nm)</a></li>
</ul></li>
</ul></li>
<li><a href="#model-training" id="toc-model-training" class="nav-link" data-scroll-target="#model-training"><span class="header-section-number">3</span> Model Training</a>
<ul class="collapse">
<li><a href="#model-workflow" id="toc-model-workflow" class="nav-link" data-scroll-target="#model-workflow"><span class="header-section-number">3.1</span> Model Workflow</a></li>
</ul></li>
<li><a href="#evaluation" id="toc-evaluation" class="nav-link" data-scroll-target="#evaluation"><span class="header-section-number">4</span> Evaluation</a></li>
<li><a href="#conclusion" id="toc-conclusion" class="nav-link" data-scroll-target="#conclusion"><span class="header-section-number">5</span> Conclusion</a>
<ul class="collapse">
<li><a href="#loss-over-epochs" id="toc-loss-over-epochs" class="nav-link" data-scroll-target="#loss-over-epochs"><span class="header-section-number">5.1</span> Loss over Epochs</a></li>
<li><a href="#mse-over-epochs" id="toc-mse-over-epochs" class="nav-link" data-scroll-target="#mse-over-epochs"><span class="header-section-number">5.2</span> MSE over Epochs</a></li>
<li><a href="#key-observations" id="toc-key-observations" class="nav-link" data-scroll-target="#key-observations"><span class="header-section-number">5.3</span> Key Observations</a></li>
<li><a href="#recommendations" id="toc-recommendations" class="nav-link" data-scroll-target="#recommendations"><span class="header-section-number">5.4</span> Recommendations</a></li>
</ul></li>
<li><a href="#references" id="toc-references" class="nav-link" data-scroll-target="#references"><span class="header-section-number">6</span> References</a></li>
</ul>
<div class="quarto-alternate-notebooks"><h2>Notebooks</h2><ul><li><a href="submission-preview.html"><i class="bi bi-journal-code"></i>Article Notebook</a></li><li><a href="notebooks/deepesdl-S5PL2-preview.html"><i class="bi bi-journal-code"></i>deepesdl-S5PL2.ipynb</a></li><li><a href="notebooks/smogseer100-preview.html"><i class="bi bi-journal-code"></i>smogseer100.ipynb</a></li><li><a href="notebooks/smogseer50-preview.html"><i class="bi bi-journal-code"></i>smogseer50.ipynb</a></li></ul></div></nav>
</div>
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar zindex-bottom">
</div>
<main class="content quarto-banner-title-block" id="quarto-document-content">
<section id="introduction" class="level1" data-number="1">
<h1 data-number="1"><span class="header-section-number">1</span> Introduction</h1>
<p>Convincing evidence has shown that air pollution is a major environmental risk to health. The World Health Organization (WHO) estimates that 4.2 million premature deaths occur each year due to outdoor air pollution (<span class="citation" data-cites="majeed2024solving">Majeed et al. (<a href="#ref-majeed2024solving" role="doc-biblioref">2024</a>)</span>). In South Asia, air pollution is a major public health concern, with high levels of particulate matter (PM2.5) and other pollutants (<span class="citation" data-cites="majeed2024solving">Majeed et al. (<a href="#ref-majeed2024solving" role="doc-biblioref">2024</a>)</span>). Monitoring air quality is essential for public health and environmental protection. Satellites provide a valuable tool for monitoring air quality, as they can measure pollutants such as methane (CH4), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), Formaldehyde (HCHO), and ozone (O3) from space. Using these variables,the Sentinel-5P product also calculates the Aerosol Index (AI) which is a measure of the amount of aerosols in the atmosphere. The AI is used to monitor air quality and can be used to forecast air quality events such as smog. The aerosol index (AI) is a measure of the amount of aerosols in the atmosphere and is used to monitor air quality. The AI data from the Sentinel-5P satellite is available in near real-time and can be used to monitor air quality (<span class="citation" data-cites="Sentinel">ESA (<a href="#ref-Sentinel" role="doc-biblioref">2021</a>)</span>).</p>
<p>In this project, we will use a convolutional LSTM neural network to forecast the AI in South Asia. The goal of this project is to develop a model that can accurately predict the AI in the future and help in monitoring air quality. The convolutional LSTM neural network is a class of neural networks that is used for spatio-temporal data (<span class="citation" data-cites="shi2015convolutional">Shi et al. (<a href="#ref-shi2015convolutional" role="doc-biblioref">2015</a>)</span>). It combines the spatial information from convolutional layers with the temporal information from LSTM layers. The convolutional LSTM neural network has been shown to be effective for predicting spatio-temporal data such as weather forecasting (<span class="citation" data-cites="kumar2020convcast">Kumar et al. (<a href="#ref-kumar2020convcast" role="doc-biblioref">2020</a>)</span>) and anomaly detection (<span class="citation" data-cites="luo2017remembering">Luo, Liu, and Gao (<a href="#ref-luo2017remembering" role="doc-biblioref">2017</a>)</span>).</p>
<p>The goal of this project is to develop a model that can accurately forecast the AI in the future and help in monitoring air quality.</p>
</section>
<section id="data" class="level1" data-number="2">
<h1 data-number="2"><span class="header-section-number">2</span> Data</h1>
<p>An arbitary study area was chosen which confined to bounding box covering northern regions of South Asia as these regions continuosly experience some of world’s worst air quality (<span class="citation" data-cites="majeed2024solving">Majeed et al. (<a href="#ref-majeed2024solving" role="doc-biblioref">2024</a>)</span>). The bounding box coordinates were:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>bbox <span class="op">=</span> [<span class="fl">68.137207</span>,<span class="fl">24.886436</span>,<span class="fl">84.836426</span>,<span class="fl">34.379713</span>] <span class="co">#WGS84 // lon,lat,lon,lat</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>For the study area abive, the corresponding Sentinel-5P data was downloaded using the Deep Earth System Data Lab’s <a href="https://deepesdl.readthedocs.io/en/latest/datasets/ESDC/">xcube sentinel datatore</a> (<span class="citation" data-cites="Brandt:2023">Brandt (<a href="#ref-Brandt:2023" role="doc-biblioref">2023</a>)</span>). The attached notebook titled <code>deepesdl-S5PL2.ipynb</code> can be viewed to see how this works. ALternative, the attached script titled <code>data.py</code> as a Code Link in this manuscript document can also be used to download the raw data.</p>
<p>However, for ease, the downloaded version resulting file can be found on Zenodo (<span class="citation" data-cites="khan2024smogseer">Khan (<a href="#ref-khan2024smogseer" role="doc-biblioref">2024</a>)</span>).</p>
<p>The <strong>timeperiod</strong> for the study was chosen from <strong>01.01.2019</strong> to <strong>31.12.2023</strong>. The data was downloaded from the Sentinel-5P data store using the Deep Earth System Data Lab’s <a href="https://deepesdl.readthedocs.io/en/latest/datasets/ESDC/">xcube sentinel datatore</a> (<span class="citation" data-cites="Brandt:2023">Brandt (<a href="#ref-Brandt:2023" role="doc-biblioref">2023</a>)</span>). The data was downloaded in the form of netCDF files which contain the AI data for the study area and time period. The data was then preprocessed and split into training and testing datasets. The training dataset contains the AI data from <strong>01.01.2019</strong> to <strong>31.02.2022</strong> and the testing dataset contains the AI data from <strong>01.01.2023</strong> to <strong>31.12.2023</strong>.</p>
<p>The <strong>spatial resolution</strong> of the data is 3.629km x 3.269km per pixel.</p>
<p>Here is the resulting dataset:</p>
<div id="cell-6" class="cell" data-execution_count="2">
<div class="cell-output cell-output-display" data-execution_count="2">
<div><svg style="position: absolute; width: 0; height: 0; overflow: hidden">
<defs>
<symbol id="icon-database" viewbox="0 0 32 32">
<path d="M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z"></path>
<path d="M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z"></path>
<path d="M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z"></path>
</symbol>
<symbol id="icon-file-text2" viewbox="0 0 32 32">
<path d="M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z"></path>
<path d="M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z"></path>
<path d="M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z"></path>
<path d="M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z"></path>
</symbol>
</defs>
</svg>
<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.
*
*/
:root {
--xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));
--xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));
--xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));
--xr-border-color: var(--jp-border-color2, #e0e0e0);
--xr-disabled-color: var(--jp-layout-color3, #bdbdbd);
--xr-background-color: var(--jp-layout-color0, white);
--xr-background-color-row-even: var(--jp-layout-color1, white);
--xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);
}
html[theme=dark],
body[data-theme=dark],
body.vscode-dark {
--xr-font-color0: rgba(255, 255, 255, 1);
--xr-font-color2: rgba(255, 255, 255, 0.54);
--xr-font-color3: rgba(255, 255, 255, 0.38);
--xr-border-color: #1F1F1F;
--xr-disabled-color: #515151;
--xr-background-color: #111111;
--xr-background-color-row-even: #111111;
--xr-background-color-row-odd: #313131;
}
.xr-wrap {
display: block !important;
min-width: 300px;
max-width: 700px;
}
.xr-text-repr-fallback {
/* fallback to plain text repr when CSS is not injected (untrusted notebook) */
display: none;
}
.xr-header {
padding-top: 6px;
padding-bottom: 6px;
margin-bottom: 4px;
border-bottom: solid 1px var(--xr-border-color);
}
.xr-header > div,
.xr-header > ul {
display: inline;
margin-top: 0;
margin-bottom: 0;
}
.xr-obj-type,
.xr-array-name {
margin-left: 2px;
margin-right: 10px;
}
.xr-obj-type {
color: var(--xr-font-color2);
}
.xr-sections {
padding-left: 0 !important;
display: grid;
grid-template-columns: 150px auto auto 1fr 20px 20px;
}
.xr-section-item {
display: contents;
}
.xr-section-item input {
display: none;
}
.xr-section-item input + label {
color: var(--xr-disabled-color);
}
.xr-section-item input:enabled + label {
cursor: pointer;
color: var(--xr-font-color2);
}
.xr-section-item input:enabled + label:hover {
color: var(--xr-font-color0);
}
.xr-section-summary {
grid-column: 1;
color: var(--xr-font-color2);
font-weight: 500;
}
.xr-section-summary > span {
display: inline-block;
padding-left: 0.5em;
}
.xr-section-summary-in:disabled + label {
color: var(--xr-font-color2);
}
.xr-section-summary-in + label:before {
display: inline-block;
content: '►';
font-size: 11px;
width: 15px;
text-align: center;
}
.xr-section-summary-in:disabled + label:before {
color: var(--xr-disabled-color);
}
.xr-section-summary-in:checked + label:before {
content: '▼';
}
.xr-section-summary-in:checked + label > span {
display: none;
}
.xr-section-summary,
.xr-section-inline-details {
padding-top: 4px;
padding-bottom: 4px;
}
.xr-section-inline-details {
grid-column: 2 / -1;
}
.xr-section-details {
display: none;
grid-column: 1 / -1;
margin-bottom: 5px;
}
.xr-section-summary-in:checked ~ .xr-section-details {
display: contents;
}
.xr-array-wrap {
grid-column: 1 / -1;
display: grid;
grid-template-columns: 20px auto;
}
.xr-array-wrap > label {
grid-column: 1;
vertical-align: top;
}
.xr-preview {
color: var(--xr-font-color3);
}
.xr-array-preview,
.xr-array-data {
padding: 0 5px !important;
grid-column: 2;
}
.xr-array-data,
.xr-array-in:checked ~ .xr-array-preview {
display: none;
}
.xr-array-in:checked ~ .xr-array-data,
.xr-array-preview {
display: inline-block;
}
.xr-dim-list {
display: inline-block !important;
list-style: none;
padding: 0 !important;
margin: 0;
}
.xr-dim-list li {
display: inline-block;
padding: 0;
margin: 0;
}
.xr-dim-list:before {
content: '(';
}
.xr-dim-list:after {
content: ')';
}
.xr-dim-list li:not(:last-child):after {
content: ',';
padding-right: 5px;
}
.xr-has-index {
font-weight: bold;
}
.xr-var-list,
.xr-var-item {
display: contents;
}
.xr-var-item > div,
.xr-var-item label,
.xr-var-item > .xr-var-name span {
background-color: var(--xr-background-color-row-even);
margin-bottom: 0;
}
.xr-var-item > .xr-var-name:hover span {
padding-right: 5px;
}
.xr-var-list > li:nth-child(odd) > div,
.xr-var-list > li:nth-child(odd) > label,
.xr-var-list > li:nth-child(odd) > .xr-var-name span {
background-color: var(--xr-background-color-row-odd);
}
.xr-var-name {
grid-column: 1;
}
.xr-var-dims {
grid-column: 2;
}
.xr-var-dtype {
grid-column: 3;
text-align: right;
color: var(--xr-font-color2);
}
.xr-var-preview {
grid-column: 4;
}
.xr-index-preview {
grid-column: 2 / 5;
color: var(--xr-font-color2);
}
.xr-var-name,
.xr-var-dims,
.xr-var-dtype,
.xr-preview,
.xr-attrs dt {
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
padding-right: 10px;
}
.xr-var-name:hover,
.xr-var-dims:hover,
.xr-var-dtype:hover,
.xr-attrs dt:hover {
overflow: visible;
width: auto;
z-index: 1;
}
.xr-var-attrs,
.xr-var-data,
.xr-index-data {
display: none;
background-color: var(--xr-background-color) !important;
padding-bottom: 5px !important;
}
.xr-var-attrs-in:checked ~ .xr-var-attrs,
.xr-var-data-in:checked ~ .xr-var-data,
.xr-index-data-in:checked ~ .xr-index-data {
display: block;
}
.xr-var-data > table {
float: right;
}
.xr-var-name span,
.xr-var-data,
.xr-index-name div,
.xr-index-data,
.xr-attrs {
padding-left: 25px !important;
}
.xr-attrs,
.xr-var-attrs,
.xr-var-data,
.xr-index-data {
grid-column: 1 / -1;
}
dl.xr-attrs {
padding: 0;
margin: 0;
display: grid;
grid-template-columns: 125px auto;
}
.xr-attrs dt,
.xr-attrs dd {
padding: 0;
margin: 0;
float: left;
padding-right: 10px;
width: auto;
}
.xr-attrs dt {
font-weight: normal;
grid-column: 1;
}
.xr-attrs dt:hover span {
display: inline-block;
background: var(--xr-background-color);
padding-right: 10px;
}
.xr-attrs dd {
grid-column: 2;
white-space: pre-wrap;
word-break: break-all;
}
.xr-icon-database,
.xr-icon-file-text2,
.xr-no-icon {
display: inline-block;
vertical-align: middle;
width: 1em;
height: 1.5em !important;
stroke-width: 0;
stroke: currentColor;
fill: currentColor;
}
</style><pre class="xr-text-repr-fallback"><xarray.Dataset> Size: 2GB
Dimensions: (time: 366, lat: 291, lon: 512, bnds: 2)
Coordinates:
* lat (lat) float64 2kB 34.36 34.33 34.3 ... 24.97 24.94 24.9
* lon (lon) float64 4kB 68.15 68.19 68.22 ... 84.75 84.79 84.82
* time (time) datetime64[ns] 3kB 2019-01-03T12:00:00 ... 2024-01...
time_bnds (time, bnds) datetime64[ns] 6kB ...
Dimensions without coordinates: bnds
Data variables:
AER_AI_340_380 (time, lat, lon) float32 218MB ...
AER_AI_354_388 (time, lat, lon) float32 218MB ...
CH4 (time, lat, lon) float32 218MB ...
CLOUD_FRACTION (time, lat, lon) float32 218MB ...
CO (time, lat, lon) float32 218MB ...
HCHO (time, lat, lon) float32 218MB ...
NO2 (time, lat, lon) float32 218MB ...
O3 (time, lat, lon) float32 218MB ...
SO2 (time, lat, lon) float32 218MB ...
Attributes:
Conventions: CF-1.7
title: S5PL2 Data Cube Subset
history: [{'program': 'xcube_sh.chunkstore.SentinelHubC...
date_created: 2024-05-02T13:00:01.155492
time_coverage_start: 2019-01-01T00:00:00+00:00
time_coverage_end: 2024-01-05T00:00:00+00:00
time_coverage_duration: P1830DT0H0M0S
time_coverage_resolution: P5DT0H0M0S
geospatial_lon_min: 68.137207
geospatial_lat_min: 24.886436
geospatial_lon_max: 84.836426
geospatial_lat_max: 34.37759367382812</pre><div class="xr-wrap" style="display:none"><div class="xr-header"><div class="xr-obj-type">xarray.Dataset</div></div><ul class="xr-sections"><li class="xr-section-item"><input id="section-46cd0393-8957-49be-b4fe-56c1f3fb4fa1" class="xr-section-summary-in" type="checkbox" disabled=""><label for="section-46cd0393-8957-49be-b4fe-56c1f3fb4fa1" class="xr-section-summary" title="Expand/collapse section">Dimensions:</label><div class="xr-section-inline-details"><ul class="xr-dim-list"><li><span class="xr-has-index">time</span>: 366</li><li><span class="xr-has-index">lat</span>: 291</li><li><span class="xr-has-index">lon</span>: 512</li><li><span>bnds</span>: 2</li></ul></div><div class="xr-section-details"></div></li><li class="xr-section-item"><input id="section-1873ddc3-1e8b-4977-8c3a-c6f928de29cc" class="xr-section-summary-in" type="checkbox" checked=""><label for="section-1873ddc3-1e8b-4977-8c3a-c6f928de29cc" class="xr-section-summary">Coordinates: <span>(4)</span></label><div class="xr-section-inline-details"></div><div class="xr-section-details"><ul class="xr-var-list"><li class="xr-var-item"><div class="xr-var-name"><span class="xr-has-index">lat</span></div><div class="xr-var-dims">(lat)</div><div class="xr-var-dtype">float64</div><div class="xr-var-preview xr-preview">34.36 34.33 34.3 ... 24.94 24.9</div><input id="attrs-383dab27-68de-43e9-bb15-74891a0c4433" class="xr-var-attrs-in" type="checkbox"><label for="attrs-383dab27-68de-43e9-bb15-74891a0c4433" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-9aeeab2e-6dcc-4426-94df-fe82b96dab01" class="xr-var-data-in" type="checkbox"><label for="data-9aeeab2e-6dcc-4426-94df-fe82b96dab01" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>units :</span></dt><dd>decimal_degrees</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>standard_name :</span></dt><dd>latitude</dd></dl></div><div class="xr-var-data"><pre>array([34.361286, 34.32867 , 34.296055, ..., 24.967975, 24.935359, 24.902744])</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span class="xr-has-index">lon</span></div><div class="xr-var-dims">(lon)</div><div class="xr-var-dtype">float64</div><div class="xr-var-preview xr-preview">68.15 68.19 68.22 ... 84.79 84.82</div><input id="attrs-958fbf5b-3f0e-4515-a2f9-7d86dfd5a595" class="xr-var-attrs-in" type="checkbox"><label for="attrs-958fbf5b-3f0e-4515-a2f9-7d86dfd5a595" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-654d857b-58c7-439e-9705-c1b9cac2e49d" class="xr-var-data-in" type="checkbox"><label for="data-654d857b-58c7-439e-9705-c1b9cac2e49d" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>units :</span></dt><dd>decimal_degrees</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>standard_name :</span></dt><dd>longitude</dd></dl></div><div class="xr-var-data"><pre>array([68.153515, 68.18613 , 68.218746, ..., 84.754887, 84.787503, 84.820118])</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span class="xr-has-index">time</span></div><div class="xr-var-dims">(time)</div><div class="xr-var-dtype">datetime64[ns]</div><div class="xr-var-preview xr-preview">2019-01-03T12:00:00 ... 2024-01-...</div><input id="attrs-5041e548-d6bc-4657-991c-c1cc36f6382c" class="xr-var-attrs-in" type="checkbox"><label for="attrs-5041e548-d6bc-4657-991c-c1cc36f6382c" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-8eb27dc7-b017-4933-85f2-7bc02eb43a8a" class="xr-var-data-in" type="checkbox"><label for="data-8eb27dc7-b017-4933-85f2-7bc02eb43a8a" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd></dl></div><div class="xr-var-data"><pre>array(['2019-01-03T12:00:00.000000000', '2019-01-08T12:00:00.000000000',
'2019-01-13T12:00:00.000000000', ..., '2023-12-23T12:00:00.000000000',
'2023-12-28T12:00:00.000000000', '2024-01-02T12:00:00.000000000'],
dtype='datetime64[ns]')</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>time_bnds</span></div><div class="xr-var-dims">(time, bnds)</div><div class="xr-var-dtype">datetime64[ns]</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-7d76ea20-1be1-43b1-a5dd-2e3d49a7b55d" class="xr-var-attrs-in" type="checkbox" disabled=""><label for="attrs-7d76ea20-1be1-43b1-a5dd-2e3d49a7b55d" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-11498161-9204-4f06-ae97-6cc1a09b2d43" class="xr-var-data-in" type="checkbox"><label for="data-11498161-9204-4f06-ae97-6cc1a09b2d43" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"></dl></div><div class="xr-var-data"><pre>[732 values with dtype=datetime64[ns]]</pre></div></li></ul></div></li><li class="xr-section-item"><input id="section-309e9938-c905-46c9-b6a8-d453013628ec" class="xr-section-summary-in" type="checkbox" checked=""><label for="section-309e9938-c905-46c9-b6a8-d453013628ec" class="xr-section-summary">Data variables: <span>(9)</span></label><div class="xr-section-inline-details"></div><div class="xr-section-details"><ul class="xr-var-list"><li class="xr-var-item"><div class="xr-var-name"><span>AER_AI_340_380</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-b2b5e623-d4cb-4808-83ff-800a6273a989" class="xr-var-attrs-in" type="checkbox"><label for="attrs-b2b5e623-d4cb-4808-83ff-800a6273a989" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-4752bd83-57e6-461e-b406-60e527070197" class="xr-var-data-in" type="checkbox"><label for="data-4752bd83-57e6-461e-b406-60e527070197" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>Unitless</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>AER_AI_354_388</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-f8cb86ed-3135-4ac8-b9ce-984e5ba0d93f" class="xr-var-attrs-in" type="checkbox"><label for="attrs-f8cb86ed-3135-4ac8-b9ce-984e5ba0d93f" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-5349665e-884e-41d2-9002-28a8ede62bbd" class="xr-var-data-in" type="checkbox"><label for="data-5349665e-884e-41d2-9002-28a8ede62bbd" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>Unitless</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>CH4</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-37989f4b-9195-4b3a-aa08-e567c6006a07" class="xr-var-attrs-in" type="checkbox"><label for="attrs-37989f4b-9195-4b3a-aa08-e567c6006a07" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-eb7e8d1c-6bc8-4004-b04f-b813e0a76fc6" class="xr-var-data-in" type="checkbox"><label for="data-eb7e8d1c-6bc8-4004-b04f-b813e0a76fc6" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>parts per billion</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>CLOUD_FRACTION</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-2663f935-8e50-402e-a3cd-051b0069e618" class="xr-var-attrs-in" type="checkbox"><label for="attrs-2663f935-8e50-402e-a3cd-051b0069e618" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-50964084-8518-4d3f-a711-d8c04c089072" class="xr-var-data-in" type="checkbox"><label for="data-50964084-8518-4d3f-a711-d8c04c089072" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>Unitless</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>CO</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-d30b676d-72b0-4cb2-ace5-eb7a8f245e01" class="xr-var-attrs-in" type="checkbox"><label for="attrs-d30b676d-72b0-4cb2-ace5-eb7a8f245e01" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-a19858e5-4ecf-4038-ab08-1bc347fcf4ee" class="xr-var-data-in" type="checkbox"><label for="data-a19858e5-4ecf-4038-ab08-1bc347fcf4ee" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>mol/m^2</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>HCHO</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-c1116b7f-6a07-45a9-9dbb-9cac356af916" class="xr-var-attrs-in" type="checkbox"><label for="attrs-c1116b7f-6a07-45a9-9dbb-9cac356af916" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-2c714e42-cdc3-4503-a1b4-9e09e086148f" class="xr-var-data-in" type="checkbox"><label for="data-2c714e42-cdc3-4503-a1b4-9e09e086148f" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>mol/m^2</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>NO2</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-4abe8004-6a4b-4306-bfa7-7dbf9c709d55" class="xr-var-attrs-in" type="checkbox"><label for="attrs-4abe8004-6a4b-4306-bfa7-7dbf9c709d55" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-03a38d47-0e19-4394-a5aa-30719575ef35" class="xr-var-data-in" type="checkbox"><label for="data-03a38d47-0e19-4394-a5aa-30719575ef35" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>mol/m^2</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>O3</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-529d68d9-a42d-4093-a070-d2726bf9e630" class="xr-var-attrs-in" type="checkbox"><label for="attrs-529d68d9-a42d-4093-a070-d2726bf9e630" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-9fd469b8-0214-482b-8f31-8ce0a0b7f019" class="xr-var-data-in" type="checkbox"><label for="data-9fd469b8-0214-482b-8f31-8ce0a0b7f019" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>mol/m^2</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li><li class="xr-var-item"><div class="xr-var-name"><span>SO2</span></div><div class="xr-var-dims">(time, lat, lon)</div><div class="xr-var-dtype">float32</div><div class="xr-var-preview xr-preview">...</div><input id="attrs-d2c1b02c-83a9-445e-a6ac-107f067db34d" class="xr-var-attrs-in" type="checkbox"><label for="attrs-d2c1b02c-83a9-445e-a6ac-107f067db34d" title="Show/Hide attributes"><svg class="icon xr-icon-file-text2"><use href="#icon-file-text2"></use></svg></label><input id="data-a98a39e3-adfb-4a77-b3a9-577064e071a1" class="xr-var-data-in" type="checkbox"><label for="data-a98a39e3-adfb-4a77-b3a9-577064e071a1" title="Show/Hide data repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-var-attrs"><dl class="xr-attrs"><dt><span>sample_type :</span></dt><dd>FLOAT32</dd><dt><span>units :</span></dt><dd>mol/m^2</dd></dl></div><div class="xr-var-data"><pre>[54531072 values with dtype=float32]</pre></div></li></ul></div></li><li class="xr-section-item"><input id="section-cc796141-0cb8-4821-bb6b-a5f785657134" class="xr-section-summary-in" type="checkbox"><label for="section-cc796141-0cb8-4821-bb6b-a5f785657134" class="xr-section-summary">Indexes: <span>(3)</span></label><div class="xr-section-inline-details"></div><div class="xr-section-details"><ul class="xr-var-list"><li class="xr-var-item"><div class="xr-index-name"><div>lat</div></div><div class="xr-index-preview">PandasIndex</div><div></div><input id="index-deb55384-ff91-4298-8be1-e0609c57e7c5" class="xr-index-data-in" type="checkbox"><label for="index-deb55384-ff91-4298-8be1-e0609c57e7c5" title="Show/Hide index repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-index-data"><pre>PandasIndex(Index([34.361285842773434, 34.32867018066406, 34.29605451855468,
34.26343885644531, 34.23082319433593, 34.19820753222656,
34.16559187011718, 34.13297620800781, 34.10036054589843,
34.06774488378906,
...
25.19628479003906, 25.163669127929687, 25.13105346582031,
25.098437803710937, 25.06582214160156, 25.033206479492186,
25.00059081738281, 24.967975155273436, 24.93535949316406,
24.902743831054686],
dtype='float64', name='lat', length=291))</pre></div></li><li class="xr-var-item"><div class="xr-index-name"><div>lon</div></div><div class="xr-index-preview">PandasIndex</div><div></div><input id="index-2acaa2b6-62f5-434b-9dc1-6a6592d39ce8" class="xr-index-data-in" type="checkbox"><label for="index-2acaa2b6-62f5-434b-9dc1-6a6592d39ce8" title="Show/Hide index repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-index-data"><pre>PandasIndex(Index([ 68.1535148310547, 68.18613049316407, 68.21874615527344,
68.25136181738281, 68.2839774794922, 68.31659314160157,
68.34920880371094, 68.38182446582032, 68.4144401279297,
68.44705579003907,
...
84.52657720996093, 84.55919287207031, 84.59180853417969,
84.62442419628906, 84.65703985839843, 84.68965552050781,
84.72227118261719, 84.75488684472657, 84.78750250683593,
84.82011816894531],
dtype='float64', name='lon', length=512))</pre></div></li><li class="xr-var-item"><div class="xr-index-name"><div>time</div></div><div class="xr-index-preview">PandasIndex</div><div></div><input id="index-7ecc1edb-9242-462e-afb5-9339c04f20a9" class="xr-index-data-in" type="checkbox"><label for="index-7ecc1edb-9242-462e-afb5-9339c04f20a9" title="Show/Hide index repr"><svg class="icon xr-icon-database"><use href="#icon-database"></use></svg></label><div class="xr-index-data"><pre>PandasIndex(DatetimeIndex(['2019-01-03 12:00:00', '2019-01-08 12:00:00',
'2019-01-13 12:00:00', '2019-01-18 12:00:00',
'2019-01-23 12:00:00', '2019-01-28 12:00:00',
'2019-02-02 12:00:00', '2019-02-07 12:00:00',
'2019-02-12 12:00:00', '2019-02-17 12:00:00',
...
'2023-11-18 12:00:00', '2023-11-23 12:00:00',
'2023-11-28 12:00:00', '2023-12-03 12:00:00',
'2023-12-08 12:00:00', '2023-12-13 12:00:00',
'2023-12-18 12:00:00', '2023-12-23 12:00:00',
'2023-12-28 12:00:00', '2024-01-02 12:00:00'],
dtype='datetime64[ns]', name='time', length=366, freq=None))</pre></div></li></ul></div></li><li class="xr-section-item"><input id="section-b00d61b2-66f1-4dac-8881-841953f50682" class="xr-section-summary-in" type="checkbox"><label for="section-b00d61b2-66f1-4dac-8881-841953f50682" class="xr-section-summary">Attributes: <span>(12)</span></label><div class="xr-section-inline-details"></div><div class="xr-section-details"><dl class="xr-attrs"><dt><span>Conventions :</span></dt><dd>CF-1.7</dd><dt><span>title :</span></dt><dd>S5PL2 Data Cube Subset</dd><dt><span>history :</span></dt><dd>[{'program': 'xcube_sh.chunkstore.SentinelHubChunkStore', 'cube_config': {'dataset_name': 'S5PL2', 'band_names': ['NO2', 'SO2', 'O3', 'CO', 'CH4', 'HCHO', 'AER_AI_340_380', 'AER_AI_354_388', 'CLOUD_FRACTION'], 'band_fill_values': None, 'band_sample_types': None, 'band_units': None, 'tile_size': [512, 291], 'bbox': [68.137207, 24.886436, 84.836426, 34.37759367382812], 'spatial_res': 0.032615662109375, 'crs': 'WGS84', 'upsampling': 'BILINEAR', 'downsampling': 'NEAREST', 'mosaicking_order': 'mostRecent', 'time_range': ['2019-01-01T00:00:00+00:00', '2023-12-31T00:00:00+00:00'], 'time_period': '5 days 00:00:00', 'time_tolerance': None, 'collection_id': None, 'four_d': False}}]</dd><dt><span>date_created :</span></dt><dd>2024-05-02T13:00:01.155492</dd><dt><span>time_coverage_start :</span></dt><dd>2019-01-01T00:00:00+00:00</dd><dt><span>time_coverage_end :</span></dt><dd>2024-01-05T00:00:00+00:00</dd><dt><span>time_coverage_duration :</span></dt><dd>P1830DT0H0M0S</dd><dt><span>time_coverage_resolution :</span></dt><dd>P5DT0H0M0S</dd><dt><span>geospatial_lon_min :</span></dt><dd>68.137207</dd><dt><span>geospatial_lat_min :</span></dt><dd>24.886436</dd><dt><span>geospatial_lon_max :</span></dt><dd>84.836426</dd><dt><span>geospatial_lat_max :</span></dt><dd>34.37759367382812</dd></dl></div></li></ul></div></div>
</div>
<a class="quarto-notebook-link" id="nblink-1" href="submission-preview.html#cell-6">Source: Article Notebook</a></div>
<section id="predictor-variables-features" class="level2" data-number="2.1">
<h2 data-number="2.1" class="anchored" data-anchor-id="predictor-variables-features"><span class="header-section-number">2.1</span> Predictor variables (features)</h2>
<p>The following predictor variables were chose for training the ConvLSTM.</p>
<section id="methane-ch4" class="level3" data-number="2.1.1">
<h3 data-number="2.1.1" class="anchored" data-anchor-id="methane-ch4"><span class="header-section-number">2.1.1</span> Methane – CH4</h3>
<div id="cell-fig-CH4" class="cell" data-execution_count="3">
<div class="cell-output cell-output-display" data-execution_count="3">
<div id="fig-ch4" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of methane in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-ch4-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-ch4-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-1" title="Figure 1: Methane (CH4) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."><img src="submission_files/figure-html/fig-ch4-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of methane in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-ch4-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 1: Methane (CH4) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
<section id="ozone-o3" class="level3" data-number="2.1.2">
<h3 data-number="2.1.2" class="anchored" data-anchor-id="ozone-o3"><span class="header-section-number">2.1.2</span> Ozone – O3</h3>
<div id="cell-fig-O3" class="cell" data-execution_count="4">
<div class="cell-output cell-output-display" data-execution_count="4">
<div id="fig-o3" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of ozone in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-o3-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-o3-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-2" title="Figure 2: Ozone (O3) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."><img src="submission_files/figure-html/fig-o3-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of ozone in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-o3-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 2: Ozone (O3) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
<section id="sulphur-dioxide-so2" class="level3" data-number="2.1.3">
<h3 data-number="2.1.3" class="anchored" data-anchor-id="sulphur-dioxide-so2"><span class="header-section-number">2.1.3</span> Sulphur Dioxide – SO2</h3>
<div id="cell-fig-SO2" class="cell" data-execution_count="5">
<div class="cell-output cell-output-display" data-execution_count="5">
<div id="fig-so2" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of sulphur dioxide in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-so2-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-so2-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-3" title="Figure 3: Sulphur Dioxide (SO2) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."><img src="submission_files/figure-html/fig-so2-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of sulphur dioxide in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-so2-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 3: Sulphur Dioxide (SO2) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
<section id="carbon-monoxide-co" class="level3" data-number="2.1.4">
<h3 data-number="2.1.4" class="anchored" data-anchor-id="carbon-monoxide-co"><span class="header-section-number">2.1.4</span> Carbon Monoxide – CO</h3>
<div id="cell-fig-CO" class="cell" data-execution_count="6">
<div class="cell-output cell-output-display" data-execution_count="6">
<div id="fig-co" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of carbon monoxide in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-co-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-co-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-4" title="Figure 4: Carbon Monoxide (CO) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."><img src="submission_files/figure-html/fig-co-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of carbon monoxide in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-co-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 4: Carbon Monoxide (CO) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
<section id="nitrogen-dioxide-no2" class="level3" data-number="2.1.5">
<h3 data-number="2.1.5" class="anchored" data-anchor-id="nitrogen-dioxide-no2"><span class="header-section-number">2.1.5</span> Nitrogen Dioxide – NO2</h3>
<div id="cell-fig-NO2" class="cell" data-execution_count="7">
<div class="cell-output cell-output-display" data-execution_count="7">
<div id="fig-no2" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of nitrogen dioxide in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-no2-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-no2-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-5" title="Figure 5: Nitrogen Dioxide (NO2) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."><img src="submission_files/figure-html/fig-no2-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of nitrogen dioxide in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-no2-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 5: Nitrogen Dioxide (NO2) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
<section id="formaldehyde-hcho" class="level3" data-number="2.1.6">
<h3 data-number="2.1.6" class="anchored" data-anchor-id="formaldehyde-hcho"><span class="header-section-number">2.1.6</span> Formaldehyde – HCHO</h3>
<div id="cell-fig-HCHO" class="cell" data-execution_count="8">
<div class="cell-output cell-output-display" data-execution_count="8">
<div id="fig-hcho" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of formaldehyde in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-hcho-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-hcho-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-6" title="Figure 6: Formaldehyde (HCHO) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."><img src="submission_files/figure-html/fig-hcho-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of formaldehyde in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-hcho-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 6: Formaldehyde (HCHO) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
</section>
<section id="target-variable" class="level2" data-number="2.2">
<h2 data-number="2.2" class="anchored" data-anchor-id="target-variable"><span class="header-section-number">2.2</span> Target variable</h2>
<section id="aerosol-index-ai-340-380-nm" class="level3" data-number="2.2.1">
<h3 data-number="2.2.1" class="anchored" data-anchor-id="aerosol-index-ai-340-380-nm"><span class="header-section-number">2.2.1</span> Aerosol Index – AI (340-380 nm)</h3>
<div id="cell-fig-aeraimap" class="cell" data-execution_count="9">
<div class="cell-output cell-output-display" data-execution_count="9">
<div id="fig-aeraimap" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of aerosol index in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-aeraimap-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-aeraimap-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-7" title="Figure 7: Aerosol Index (AI) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."><img src="submission_files/figure-html/fig-aeraimap-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of aerosol index in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-aeraimap-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 7: Aerosol Index (AI) concentration in the atmosphere as measured by the Sentinel-5P satellite for 13.01.2019.
</figcaption>
</figure>
</div>
</div>
</div>
<p>The Aerosol Index shows large variability through the year and across years.</p>
<div id="cell-fig-ai" class="cell" data-execution_count="10">
<div class="cell-output cell-output-display" data-execution_count="10">
<div id="fig-ai" class="quarto-float quarto-figure quarto-figure-center anchored" alt="A map showing the concentration of aerosol index in the atmosphere as measured by the Sentinel-5P satellite for lat=31.5204, lon=74.3587.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-ai-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-ai-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-8" title="Figure 8: Aerosol Index (AI) concentration in the atmosphere as measured by the Sentinel-5P satellite for lat=31.5204, lon=74.3587."><img src="submission_files/figure-html/fig-ai-output-1.png" class="img-fluid figure-img" alt="A map showing the concentration of aerosol index in the atmosphere as measured by the Sentinel-5P satellite for lat=31.5204, lon=74.3587."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-ai-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 8: Aerosol Index (AI) concentration in the atmosphere as measured by the Sentinel-5P satellite for lat=31.5204, lon=74.3587.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
</section>
</section>
<section id="model-training" class="level1" data-number="3">
<h1 data-number="3"><span class="header-section-number">3</span> Model Training</h1>
<p>A Convolutional Long Short-Term Memory (ConvLSTM) model is a specialized neural network architecture that integrates the strengths of Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) (<span class="citation" data-cites="luo2017remembering">Luo, Liu, and Gao (<a href="#ref-luo2017remembering" role="doc-biblioref">2017</a>)</span>). This hybrid model is particularly well-suited for tasks involving spatiotemporal data, where both spatial and temporal dependencies are critical. The primary advantage of ConvLSTM models lies in their ability to simultaneously process and analyze spatial and temporal information, making them more effective for spatiotemporal tasks compared to using separate CNN and LSTM models. ConvLSTM models are used extensively in fields such as video processing, weather forecasting, and environmental monitoring, where data exhibits strong correlations across both space and time.</p>
<div id="cell-fig-convlst" class="cell" data-execution_count="12">
<div class="cell-output cell-output-display" data-execution_count="12">
<div id="fig-convlst" class="quarto-float quarto-figure quarto-figure-center anchored" alt="Convolutional LSTMs.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-convlst-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-convlst-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-9" title="Figure 9: Convolutional LSTMs combine both spatial and temporal information in the neural network (@luo2017remembering)."><img src="submission_files/figure-html/fig-convlst-output-1.png" class="img-fluid figure-img" alt="Convolutional LSTMs."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-convlst-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 9: Convolutional LSTMs combine both spatial and temporal information in the neural network (<span class="citation" data-cites="luo2017remembering">Luo, Liu, and Gao (<a href="#ref-luo2017remembering" role="doc-biblioref">2017</a>)</span>).
</figcaption>
</figure>
</div>
</div>
</div>
<p>The idea is to use the <a href="#predictor-variables-features">predictor variables</a> as input to the ConvLSTM and to get the <a href="#target-variable">taget variable</a> as an output.The model was trained at 50 and 100 epochs. The model was trained using the Adam optimizer with a learning rate of 0.001 and a batch size of 32.</p>
<p>I used the numpy (<span class="citation" data-cites="harris2020array">Harris et al. (<a href="#ref-harris2020array" role="doc-biblioref">2020</a>)</span>) python package for all the data preprocssing steps and then I used Tensorflow (<span class="citation" data-cites="Martinabadi:2015">Martin (<a href="#ref-Martinabadi:2015" role="doc-biblioref">2015</a>)</span>) and Keras (<span class="citation" data-cites="chollet2015keras">Chollet et al. (<a href="#ref-chollet2015keras" role="doc-biblioref">2015</a>)</span>) python packages for building a custom ConvLSTM. I used matplotlib (<span class="citation" data-cites="Hunter:2007">Hunter (<a href="#ref-Hunter:2007" role="doc-biblioref">2007</a>)</span>) for all plotting tasks.</p>
<p>As model training required a lot of memory, the DeepESDL Jupyter Lab proved to be insufficient. Hence, I had to train the model at the Model Server Grid (MSG) Windows cluster at the Helmholtz - Center for Environmental Research (UFZ) in Leipzig, Germany Even then, the model arichtecture had to be simplified to reduce the memory requirements. The model architecture is as follows:</p>
<div id="cell-fig-model" class="cell" data-execution_count="13">
<div class="cell-output cell-output-display" data-execution_count="13">
<div id="fig-model" class="quarto-float quarto-figure quarto-figure-center anchored" alt="Smogseer.">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-model-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<a href="submission_files/figure-html/fig-model-output-1.png" class="lightbox" data-gallery="quarto-lightbox-gallery-10" title="Figure 10: The model architecture for the custom ConvLSTM model titled “Smogseer”."><img src="submission_files/figure-html/fig-model-output-1.png" class="img-fluid figure-img" alt="Smogseer."></a>
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-model-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 10: The model architecture for the custom ConvLSTM model titled “Smogseer”.
</figcaption>
</figure>
</div>
</div>
</div>
<p>The training took approximately 4 hours for 50 epochs and 10 hours for 100 epochs.</p>
<p>The feature training (X_train) dataset dimesion were: (292, 1, 291, 512, 6). Here is the breakdown.</p>
<pre><code>292: dates
1: time step
291: latitudes
512: longitudes
6: Features ['SO2', 'NO2', 'CH4', 'O3', 'CO', 'HCHO']</code></pre>
<p>The feature testing (<a href="data/X_val.npy">X_val</a>) dataset dimesion were: (74, 1, 291, 512, 6). Here is the breakdown.</p>
<pre><code>74: dates
1: time step
291: latitudes
512: longitudes
6: Features ['SO2', 'NO2', 'CH4', 'O3', 'CO', 'HCHO']</code></pre>
<p>The target training (y_train) dataset dimension was: (292, 1, 291, 512, 1). Here is the breakdown.</p>
<pre><code>292: dates
1: time step
291: latitudes
512: longitudes
1: Target ['AI']</code></pre>
<p>The target testing (<a href="data/Y_val.npy">y_val</a>) dataset dimension was: (74, 1, 291, 512, 1). Here is the breakdown.</p>
<pre><code>74: dates
1: time step
291: latitudes
512: longitudes
1: Target ['AI']</code></pre>
<section id="model-workflow" class="level2" data-number="3.1">
<h2 data-number="3.1" class="anchored" data-anchor-id="model-workflow"><span class="header-section-number">3.1</span> Model Workflow</h2>
<p>Here is a workflow for the provided code in <a href="src/smogseer.py">smogseer.py</a>:</p>
<blockquote class="blockquote">
<p>A run of the code can be found in <a href="./notebooks/smogseer50-preview.html">smogseer50.py</a> and <a href="./notebooks/smogseer100-preview.html">smogseer100.py</a>.</p>
</blockquote>
<ul>
<li><strong>Import Libraries</strong>:
<ul>
<li>Import necessary libraries such as <code>xarray</code>, <code>numpy</code>, <code>tensorflow</code>, <code>sklearn</code>, and <code>matplotlib</code>.</li>
</ul></li>
<li><strong>Load Dataset</strong>:
<ul>
<li>Load the dataset using <code>xarray.open_dataset()</code>.</li>
</ul></li>
<li><strong>Stack Features</strong>:
<ul>
<li>Stack the features into a single <code>DataArray</code> and transpose to desired dimensions.</li>
</ul></li>
<li><strong>Convert to NumPy Arrays</strong>:
<ul>
<li>Convert the <code>DataArray</code> to a NumPy array.</li>
</ul></li>
<li><strong>Normalize Input Data</strong>:
<ul>
<li>Normalize the input data using <code>StandardScaler</code>.</li>
</ul></li>
<li><strong>Impute Missing Values in Input Data</strong>:
<ul>
<li>Reshape the data for imputation.</li>
<li>Impute missing values using <code>SimpleImputer</code>.</li>
<li>Reshape the data back to original dimensions.</li>
</ul></li>
<li><strong>Add Time Dimension to Input Data</strong>:
<ul>
<li>Add an additional time dimension to the input data.</li>
</ul></li>
<li><strong>Load Target Data</strong>:
<ul>
<li>Load the target dataset using <code>xarray.open_dataset()</code>.</li>
</ul></li>
<li><strong>Normalize Target Data</strong>:
<ul>
<li>Normalize the target data using <code>MinMaxScaler</code>.</li>
</ul></li>
<li><strong>Impute Missing Values in Target Data</strong>:
<ul>
<li>Reshape the target data for imputation.</li>
<li>Impute missing values using <code>SimpleImputer</code>.</li>
<li>Reshape the target data back to original dimensions.</li>
</ul></li>
<li><strong>Ensure Target Data Shape</strong>:
<ul>
<li>Ensure the target data shape is <code>(num_samples, num_timesteps, num_latitudes, num_longitudes, 1)</code>.</li>
</ul></li>
<li><strong>Remove Samples with NaN Values</strong>:
<ul>
<li>Identify and remove samples with NaN values in the target data.</li>
</ul></li>
<li><strong>Verify Target Data Range</strong>:
<ul>
<li>Ensure the target data values are within the valid range <code>[0, 1]</code>.</li>
</ul></li>
<li><strong>Split Data into Training and Validation Sets</strong>:
<ul>
<li>Split the cleaned data into training and validation sets based on a defined ratio.</li>
</ul></li>
<li><strong>Define Model Architecture</strong>:
<ul>
<li>Define the model architecture using <code>ConvLSTM2D</code> and <code>Conv3D</code> layers with appropriate activation functions and initializers.</li>
<li>Add batch normalization layers between LSTM layers.</li>
</ul></li>
<li><strong>Compile Model</strong>:
<ul>
<li>Compile the model with <code>Adam</code> optimizer, <code>binary_crossentropy</code> loss, and <code>mean_square_error</code> as a metric.</li>
</ul></li>
<li><strong>Print Model Summary</strong>:
<ul>
<li>Print the summary of the defined model.</li>
</ul></li>
<li><strong>Define Data Generator Class</strong>:
<ul>
<li>Define a <code>DataGenerator</code> class to handle large datasets efficiently.</li>
</ul></li>
<li><strong>Initialize Data Generators</strong>:
<ul>
<li>Initialize training and validation data generators with a specified batch size.</li>
</ul></li>
<li><strong>Define Callbacks for Training</strong>:
<ul>
<li>Define callbacks for reducing learning rate, early stopping, and TensorBoard logging.</li>
</ul></li>
<li><strong>Train the Model</strong>:
<ul>
<li>Train the model using the data generators and defined callbacks.</li>
</ul></li>
<li><strong>Save the Model</strong>:
<ul>
<li>Save the trained model to a keras file .</li>
</ul></li>
<li><strong>Load the Model</strong>:
<ul>
<li>Load the saved model for further evaluation and prediction.</li>
</ul></li>
<li><strong>Run Predictions on Validation Data</strong>:
<ul>
<li>Run predictions on the validation data using the loaded model.</li>
</ul></li>
<li><strong>Evaluate the Model</strong>:
<ul>
<li>Evaluate the model on the validation data to obtain loss and accuracy.</li>
</ul></li>
<li><strong>Binary Classification Threshold</strong>:
<ul>
<li>Apply a threshold to convert predictions to binary values for classification.</li>
</ul></li>