-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathoverview_dplyr.Rmd
1040 lines (610 loc) · 21.6 KB
/
overview_dplyr.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "An overview of dplyr"
subtitle: "Daryn Ramsden"
author: "thisisdaryn at gmail dot com"
date: "last updated: `r Sys.Date()`"
institution: ""
output:
xaringan::moon_reader:
lib_dir: libs
css: libs/switch-themer.css
chakra: libs/remark.js
nature:
highlightLines: true
countIncrementalSlides: false
includes:
after_body: libs/toggle.html
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,
warning = FALSE,
message = FALSE,
comment = "")
xaringanExtra::use_tile_view()
#xaringanExtra::use_panelset()
xaringanExtra::use_webcam()
#xaringanExtra::use_editable()
xaringanExtra::use_extra_styles(
hover_code_line = TRUE,
mute_unhighlighted_code = TRUE
)
#after installing these packages, please comment ount.
#install.packages("palmerpenguins")
#install.packages("kableExtra")
#install.packages("xaringan")
#install.packages("devtools")
#devtools::install_github("gadenbuie/xaringanExtra")
library(xaringan)
library(xaringanExtra)
library(palmerpenguins)
library(dplyr)
library(kableExtra)
```
### The data we will be using
```{r}
#install.packages("palmerpenguins")
library(palmerpenguins)
```
```{r echo = FALSE, eval = FALSE, fig.cap= "Palmer penguins data table."}
DT::datatable(penguins,
extensions = c('FixedColumns',"FixedHeader"),
options = list(scrollX = TRUE,
paging=TRUE,
fixedHeader=TRUE,
pageLength = 15))
```
```{r echo = FALSE}
library(rmarkdown)
paged_table(penguins)
```
---
### What do these variables represent?
Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
* *species*: *Adelie*, *Chinstrap* or *Gentoo*
* *island*: *Biscoe*, *Dream* or *Torgersen* (factor)
* *bill_length_mm*: bill length mm (numeric)
* *bill_depth_mm*: bill depth in mm (numeric)
* *flipper_length_mm*: flipper length in mm (numeric)
* *body_mass_g*: body mass in grams (numeric)
* *sex*: *male* or *female* (factor)
* *year*: 2007, 2008 or 2009
---
## dplyr: a package for data manipulation
The data you get is almost in the form you want
--
`dplyr` is an R package that encapsulates many common data manipulation tasks
--
Sometimes you want to:
--
* keep only some of the rows
--
* keep only some of the columns
--
* adds new columns
--
* sort data
--
* provide summary statistics
--
`dplyr` has functions for each of these (and many others)
---
## Using `dplyr`
#### How do you install `dplyr`?
```{r eval = FALSE, fig.cap = "A call to the install.packages function illustrating how to install the dplyr package from CRAN"}
install.packages("dplyr")
# or install.packages("tidyverse)
```
#### How do you use `dplyr`?
```{r fig.cap = "A call to the library function to load the dplyr package"}
library(dplyr)
# or library(tidyverse)
```
---
## Key single table verbs/functions
* Working with rows:
* `filter`: keep only some of the rows based on column values
* `slice`: keep some of the rows based on their location
* `arrange`: sort data
* Working with columns:
* `select`: keep only some of the columns
* `mutate` adds new columns
* `rename` change the name of specified columns
* `relocate` changes the order of the columns
* Groups of rows:
* `summarise` (and `group_by`): provide summary statistics
---
## `filter`
#### a function for specifying which rows to keep
Example 1: How do we get all penguins of the Chinstrap species?
---
## `filter`
#### a function for specifying which rows to keep
Example 1: How do we get all penguins of the Chinstrap species?
```{r eval = FALSE, message = FALSE, fig.cap= "A tibble showing the data filtered by chinstrap."}
chinstrap <- filter(penguins, species == "Chinstrap")
```
---
## `filter`
#### a function for specifying which rows to keep
Example 1: How do we get all penguins of the Chinstrap species?
```{r message = FALSE}
chinstrap <- filter(penguins, species == "Chinstrap")
chinstrap
```
---
## `filter`
#### a function for specifying which rows to keep
Example 2: How do we get penguins that are 4 kg or greater?
---
## `filter`
#### a function for specifying which rows to keep
Example 2: How do we get penguins that are 4 kg or greater?
```{r eval = FALSE}
penguins_4k <- filter(penguins, body_mass_g >= 4000)
```
---
## `filter`
#### a function for specifying which rows to keep
Example 2: How do we get penguins that are 4 kg or greater?
```{r, fig.cap= "A tibble applying a filter in which penguins are 4kg or greater."}
penguins_4k <- filter(penguins, body_mass_g >= 4000)
penguins_4k
```
---
### Assessment
How many penguins were found on Torgersen island (<i>Torgersen</i>)?
---
### Assessment
How many penguins were found on Torgersen island (<i>Torgersen</i>)?
```{r}
torgersen<- filter(penguins, island == "Torgersen")
dim(torgersen)
```
--
Also could have used:
```{r}
torgersen<- penguins %>% filter(island == "Torgersen")
dim(torgersen)
```
---
## `select`
#### A function/verb for specifying which columns to keep
As of dplyr 1.0 there are 5 ways to use select
1. By **position**
2. By **name**
3. by **function of name**
4. by **type**
5. by combination of the above using logical operators (`|`, `&`, `!`)
---
### `select` by position
Example: select columns 1, 3 and 5 from `penguins`
--
```{r eval = FALSE}
penguins %>% select(1, 3, 5)
```
---
### `select` by position
Example: select columns 1, 3 and 5 from `penguins`
```{r, fig.cap= "A tibble in which columns one, three, and five are selected."}
penguins %>% select(1, 3, 5)
```
---
### `select` by name
Example: select *species*, *island* and *body_mass_g*
--
```{r eval = FALSE}
penguins %>% select(species, island, body_mass_g)
```
---
### `select` by name
Example: select *species*, *island* and *body_mass_g*
```{r fig.cap= "A tibble in which species are selected by the species, island, and body_mass_g variables."}
penguins %>% select(species, island, body_mass_g)
```
---
### `select` by a function of column names
`select` can be used in conjunction with other useful functions such as:
* `starts_with`
* `ends_with`
* `contains`
* `matches`
---
### `select` by a function of column names
Example: Choose all columns that contain "mm":
```{r}
penguins_mm <- penguins %>% select(contains("mm"))
```
---
### `select` by a function of column names
Example: Choose all columns that contain "mm":
```{r fig.cap= "A tibble in which only includes data that contains mm in the variable names."}
penguins_mm <- penguins %>% select(contains("mm"))
penguins_mm
```
---
### `select` by a function of column names
Example: How to choose all columns starting with "bill":
```{r}
bills_df <- penguins %>% select(starts_with("bill"))
```
---
### `select` by a function of column names
Example: How to choose all columns starting with "bill":
```{r fig.cap= "A tibble that contains only the columns starting with the word bill."}
bills_df <- penguins %>% select(starts_with("bill"))
bills_df
```
---
### `select` by type
Example: choose all numeric columns:
```{r eval = FALSE}
penguins %>% select(where(is.numeric))
```
---
### `select` by type
Example: choose all numeric columns:
```{r fig.cap = "A tibble in which all numeric columns are selected."}
penguins %>% select(where(is.numeric))
```
---
### `select` by logical combination
Example: choose all factor variables or variables containing the word "bill"
```{r eval = FALSE}
penguins %>% select(where(is.factor) | contains("bill"))
```
---
### `select` by logical combination
Example: choose all factor variables or variables containing the word "bill"
```{r fig.cap= "A tibble in which all factor variables are seleted or contains the word bill."}
penguins %>% select(where(is.factor) | contains("bill"))
```
---
## `mutate`
#### a function to add new columns
Example: Adding a column that indicates whether a penguin has a mass greater than 4 kg
```{r eval = FALSE}
penguin_extra <- penguins %>%
mutate(above_4kg= if_else(body_mass_g > 4000, TRUE, FALSE))
```
---
## `mutate`
#### a function to add new columns
Example: Adding a column that indicates whether a penguin has a mass greater than 4 kg
```{r fig.cap = "A tibble which adds a new column called above_kg, which indicates whether a penguin has a mass greater than 4kg."}
penguin_extra <- penguins %>%
mutate(above_4kg= if_else(body_mass_g > 4000, TRUE, FALSE))
head(penguin_extra)
```
---
## `arrange`
#### A function for sorting data
Example: Sort all penguins by body mass:
--
```{r}
penguins_sorted <- penguins %>% arrange(body_mass_g)
```
---
## `arrange`
#### A function for sorting data
Example: Sort all penguins by body mass:
```{r eval = FALSE,fig.cap= "A data table which shows penguins sorted by ascending body mass."}
penguins_sorted <- penguins %>%
arrange(body_mass_g)
penguins_sorted
```
```{r echo = FALSE}
paged_table(penguins_sorted)
```
---
### sorting with multiple columns using `arrange`
Example sorting by species, then by descending order of mass:
```{r eval = FALSE}
penguins_sorted2 <- penguins %>%
arrange(species, desc(body_mass_g))
penguins_sorted2
```
```{r echo = FALSE, fig.cap = "A data table which shows penguins sorted by descending body mass."}
penguins_sorted2 <- penguins %>%
arrange(species, desc(body_mass_g))
paged_table(penguins_sorted2)
```
---
## `summarise`/`summarize`
#### A verb/function to get summary statistics.
Question: what's the mean flipper length and body mass among the Palmer penguins?
```{r fig.cap= "A tibble that shows the mean flipper length and body mass among the Palmer penguins."}
penguins %>%
summarise(num_penguins = n(),
avg_mass = mean(body_mass_g, na.rm = TRUE),
avg_fl_length = mean(flipper_length_mm, na.rm = TRUE))
```
---
## `group_by`
#### A function that makes `summarise` really powerful
`group_by` creates a grouped data frame based on columns you specify
--
For example, grouping the penguins by island and species:
--
```{r}
gr_penguins <- penguins %>% group_by(island, species)
```
---
## `group_by`
#### A function that makes `summarise` really powerful
`group_by` creates a grouped data frame based on columns you specify
For example, grouping the penguins by island and species:
```{r fig.cap = "A tibble that groups the penguins by island and species."}
gr_penguins <- penguins %>% group_by(island, species)
head(gr_penguins)
```
---
## How is the grouped data frame different?
--
* Extra information is added to the data frame
--
* rows that match on all the grouping variables will be in the same group
--
* rows that don't match on all the grouping variables will be in different groups
---
## `group_by` and `summarise` together
Now let's do the same summary as before with the grouped data:
--
```{r fig.cap= "A tibble that shows the number of penguins by average mass, average flipper length, island, and species."}
gr_penguins %>% summarise(num_penguins = n(),
avg_mass = mean(body_mass_g, na.rm = TRUE),
avg_fl_length = mean(flipper_length_mm,
na.rm = TRUE))
```
---
### New features of `summarise`
`dplyr` 1.0 has some new features of `summarise`:
* summaries that return multiple values
* summaries that return multiple columns
---
### Summaries with multiple values
Example: using `summarise` to get the range of bill lengths for each species of penguin:
```{r fig.cap = "A tibble with 2 columns. The 1st column has each species name in two consecutive rows. The 2nd column features the minimum and maximum bill lengths for each species in alternating rows."}
penguins %>%
group_by(species) %>%
summarise(rng = range(bill_length_mm, na.rm = TRUE))
```
---
### Summaries with multiple columns
Example: using `summarise` to find the minimum and maximum mass penguin on each island:
```{r fig.cap = "A tibble with 3 columns. The first column contains the names of the islands. The 2nd column contains the minimum mass of a penguin on the corresponding island. The 3rd column contains the maximum mass of a penguin on the island." }
penguins %>%
group_by(island) %>%
summarise(tibble(min_mass = min(body_mass_g, na.rm = TRUE),
max_mass = max(body_mass_g, na.rm = TRUE)))
```
---
### So ... a couple other things about groups
* default behavior is to remove the last level of grouping after a call to `summarise`
* grouped data can be used with other `dplyr` verbs e.g. `mutate`
* you can ungroup data using `ungroup`
---
### Example using `group_by` with `mutate`
What if we wanted to give each penguin a number within its species?
```{r}
numbered_penguins <- penguins %>%
group_by(species) %>%
mutate(penguin_num = 1:n())
```
---
### Example using `group_by` with `mutate`
What if we wanted to give each penguin a number within its species?
```{r fig.cap = "A tibble that adds the field penguin_num, which adds a number to a penguin within its species. In addition, the tibble contains information about the species, island, bill length, bill depth, flipper length, and body mass." }
numbered_penguins <- penguins %>%
group_by(species) %>%
mutate(penguin_num = 1:n())
numbered_penguins
```
---
## `rename`
#### A function/verb to rename columns
Works like `select`
Example: renaming by position
```{r fig.cap = "A tibble that renames column three and four to bill_length and bill_depth. In addition, the tibble shows species, island, flipper length, body mass, and sex."}
penguins_different <- penguins %>% rename(bill_length = 3,
bill_depth = 4)
penguins_different
```
---
### `rename_with`
`rename_with` can be used with a specified transformation (and optionally with a column selection).
Example: rename all columns to be uppercase
```{r fig.cap = "A tibble that renames the columns, species, island, bill length, bill depth, flipper length, and body mass to uppercase characters."}
penguins %>% rename_with(toupper)
```
---
## `rename_with`
```{r fig.cap= "This tibble shows column names that are only capitalized to uppercase when the columns contain numeric values."}
penguins %>% rename_with(toupper, where(is.numeric))
```
---
## `relocate`
### A function
* (**default**) move selected variables to the front
* move selected columns before a specified location
* move selected columns after a specified location
---
## `relocate` examples
Example: bring all the factor variables to the front
```{r eval = FALSE}
penguins %>% relocate(where(is.factor))
```
---
## `relocate` examples
Example: bring all the factor variables to the front
```{r fig.cap = "This tibble brings all the factor variables, which are species, island, and sex, to the front of the tibble."}
penguins %>% relocate(where(is.factor))
```
---
## `relocate` examples
Example: relocate all factor variables after *body_mass_g*
```{r fig.cap= "This tibble relocates all factor variables to the front after the body_mass_g column"}
penguins %>% relocate(contains("bill"), .after = body_mass_g)
```
---
### `across`: a really useful new function
What if you wanted the average value - per group - of each numeric column?
Annoying way:
```{r eval = FALSE}
penguins %>% group_by(species) %>%
summarise(avg_bill_length = mean(bill_length_mm, na.rm = TRUE),
avg_bill_depth = mean(bill_depth_mm, na.rm = TRUE),
avg_fl_length_mm = mean(flipper_length_mm, na.rm = TRUE),
avg_body_mass_g = mean(body_mass_g, na.rm = TRUE))
```
---
### `across`: a really useful new function
What if you wanted the average value - per group - of each numeric column?
Annoying way:
```{r fig.cap = "This tibble shows the average values of bill length, bill depth, flipper length, and body mass."}
penguins %>% group_by(species) %>%
summarise(avg_bill_length = mean(bill_length_mm, na.rm = TRUE),
avg_bill_depth = mean(bill_depth_mm, na.rm = TRUE),
avg_fl_length_mm = mean(flipper_length_mm, na.rm = TRUE),
avg_body_mass_g = mean(body_mass_g, na.rm = TRUE))
```
---
### `across`: a really useful new function
What if you wanted the average value - per group - of each numeric column?
Neater/better way:
```{r eval = FALSE}
penguins %>% group_by(species) %>%
summarise(across(where(is.numeric) & !contains("year"),
mean, na.rm = TRUE))
```
---
### `across`: a really useful new function
What if you wanted the average value - per group - of each numeric column?
Neater/better way:
```{r fig.cap = "A tibble which uses the across function to calculate the average values of bill length, bill depth, flipper length, and body mass."}
penguins %>% group_by(species) %>%
summarise(across(where(is.numeric) & !contains("year"),
mean, na.rm = TRUE))
```
---
### `across`: a closer look
`across` has two primary arguments:
* <tt>.cols</tt> selects the columns you want to operate on
* <tt>.fns</tt> is a function or list of functions that you want to apply
* can be a `purrr` style formula
---
### multiple summaries with `across`
Example: For each island, what is the average of all numeric variables and the count of all factor variables?
```{r fig.cap= "A tibble which shows the mean of all the values along with the count of all the factor variables."}
penguins %>%
group_by(island) %>%
summarise(
across(where(is.numeric), mean, na.rm = TRUE),
across(where(is.factor), n_distinct),
n = n(),
)
```
---
### `across` example with `filter`
Example: get all rows without missing values:
```{r}
penguins_complete <- penguins %>%
filter(across(everything(), ~ !is.na(.x)))
```
--
Is that any different to?
```{r eval = FALSE}
penguins_complete2 <- penguins %>%
filter(across(everything(), complete.cases))
```
---
### `across` example with `distinct`
All combinations of variables meeting specified criteria using `distinct`
```{r fig.cap = "A tibble that shows the distinct combinations across variables which are factors which are species, island, and sex."}
penguins %>% distinct(across(is.factor, sort = TRUE))
```
---
### `across` example with `count`
Counts of all combinations of variables meeting specified criteria using `count`
```{r fig.cap = "A tibble that gives the counts of all combinations of variables that are factors." }
penguins %>% count(across(is.factor, sort = TRUE))
```
---
### `across` example with `mutate`
Using `across` with `mutate` to rescale all numeric variables between 0 and 1
```{r fig.cap= "A tibble which rescale all the numeric variables between 0 and 1."}
rescale01 <- function(x) {
rng <- range(x, na.rm = TRUE)
(x - rng[1]) / (rng[2] - rng[1])
}
penguins_rescaled <- penguins %>%
mutate(across(where(is.numeric), rescale01))
penguins_rescaled
```
---
## Row-wise operations
Question: what if we wanted to create a new column that was the average of the <i>bill_depth_mm</i> and <i>bill_length_mm</i> variables?
You might try:
```{r eval = FALSE}
penguins %>% select(contains("bill")) %>%
mutate(avg = mean(c(bill_length_mm, bill_depth_mm), na.rm = TRUE))
```
---
## Row-wise operations
Question: what if we wanted to create a new column that was the average of the <i>bill_depth_mm</i> and <i>bill_length_mm</i> variables?
You might try:
```{r fig.cap="a tibble showing a new column of calculated means but all the values are the same in the new variable"}
penguins %>% select(contains("bill")) %>%
mutate(avg = mean(c(bill_length_mm, bill_depth_mm), na.rm = TRUE))
```
---
### Using `rowwise`
We can use `rowwise` prior to mutate instead
```{r eval = FALSE}
penguins %>%
select(contains("bill")) %>%
rowwise() %>%
mutate(avg = mean(c(bill_length_mm, bill_depth_mm), na.rm = TRUE))
```
---
### Using `rowwise`
We can use `rowwise` prior to mutate instead
```{r fig.cap = "A tibble showing a new column correctly displaying the mean for each row within the row"}
penguins %>%
select(contains("bill")) %>%
rowwise() %>%
mutate(avg = mean(c(bill_length_mm, bill_depth_mm), na.rm = TRUE))
```
---
## Joins
To illustrate the join functions, we will use two small data sets
First, a data frame containing the populations of 8 countries (via census.gov):
```{r fig.cap = "A tibble showing the names and populations of 8 countries"}
populations <- readr::read_csv("data/populations.csv")
populations
```