forked from multimodallearning/pytorch-mask-rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_from_keras.py
110 lines (94 loc) · 4.75 KB
/
convert_from_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import collections
import h5py
import torch
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
parser = argparse.ArgumentParser(description='Convert keras-mask-rcnn model to pytorch-mask-rcnn model')
parser.add_argument('--keras_model',
help='the path of the keras model',
default=None, type=str)
parser.add_argument('--pytorch_model',
help='the path of the pytorch model',
default=None, type=str)
args = parser.parse_args()
f = h5py.File(args.keras_model, mode='r')
state_dict = collections.OrderedDict();
for group_name, group in f.items():
if len(group.items())!=0:
for layer_name, layer in group.items():
for weight_name, weight in layer.items():
state_dict[layer_name+'.'+weight_name] = weight.value
replace_dict = collections.OrderedDict([
('beta:0', 'bias'), \
('gamma:0', 'weight'), \
('moving_mean:0', 'running_mean'),\
('moving_variance:0', 'running_var'),\
('bias:0', 'bias'), \
('kernel:0', 'weight'), \
('mrcnn_mask_', 'mask.'), \
('mrcnn_mask', 'mask.conv5'), \
('mrcnn_class_', 'classifier.'), \
('logits', 'linear_class'), \
('mrcnn_bbox_fc', 'classifier.linear_bbox'), \
('rpn_', 'rpn.'), \
('class_raw', 'conv_class'), \
('bbox_pred', 'conv_bbox'), \
('bn_conv1', 'fpn.C1.1'), \
('bn2a_branch1', 'fpn.C2.0.downsample.1'), \
('res2a_branch1', 'fpn.C2.0.downsample.0'), \
('bn3a_branch1', 'fpn.C3.0.downsample.1'), \
('res3a_branch1', 'fpn.C3.0.downsample.0'), \
('bn4a_branch1', 'fpn.C4.0.downsample.1'), \
('res4a_branch1', 'fpn.C4.0.downsample.0'), \
('bn5a_branch1', 'fpn.C5.0.downsample.1'), \
('res5a_branch1', 'fpn.C5.0.downsample.0'), \
('fpn_c2p2', 'fpn.P2_conv1'), \
('fpn_c3p3', 'fpn.P3_conv1'), \
('fpn_c4p4', 'fpn.P4_conv1'), \
('fpn_c5p5', 'fpn.P5_conv1'), \
('fpn_p2', 'fpn.P2_conv2.1'), \
('fpn_p3', 'fpn.P3_conv2.1'), \
('fpn_p4', 'fpn.P4_conv2.1'), \
('fpn_p5', 'fpn.P5_conv2.1'), \
])
replace_exact_dict = collections.OrderedDict([
('conv1.bias', 'fpn.C1.0.bias'), \
('conv1.weight', 'fpn.C1.0.weight'), \
])
for block in range(3):
for branch in range(3):
replace_dict['bn2' + alphabet[block] + '_branch2' + alphabet[branch]] = 'fpn.C2.' + str(block) + '.bn' + str(
branch+1)
replace_dict['res2'+alphabet[block]+'_branch2'+alphabet[branch]] = 'fpn.C2.'+str(block)+'.conv'+str(branch+1)
for block in range(4):
for branch in range(3):
replace_dict['bn3' + alphabet[block] + '_branch2' + alphabet[branch]] = 'fpn.C3.' + str(block) + '.bn' + str(
branch+1)
replace_dict['res3'+alphabet[block]+'_branch2'+alphabet[branch]] = 'fpn.C3.'+str(block)+'.conv'+str(branch+1)
for block in range(23):
for branch in range(3):
replace_dict['bn4' + alphabet[block] + '_branch2' + alphabet[branch]] = 'fpn.C4.' + str(block) + '.bn' + str(
branch+1)
replace_dict['res4'+alphabet[block]+'_branch2'+alphabet[branch]] = 'fpn.C4.'+str(block)+'.conv'+str(branch+1)
for block in range(3):
for branch in range(3):
replace_dict['bn5' + alphabet[block] + '_branch2' + alphabet[branch]] = 'fpn.C5.' + str(block) + '.bn' + str(branch+1)
replace_dict['res5'+ alphabet[block] + '_branch2' + alphabet[branch]] = 'fpn.C5.' + str(block) + '.conv' + str(branch+1)
for orig, repl in replace_dict.items():
for key in list(state_dict.keys()):
if orig in key:
state_dict[key.replace(orig, repl)] = state_dict[key]
del state_dict[key]
for orig, repl in replace_exact_dict.items():
for key in list(state_dict.keys()):
if orig == key:
state_dict[repl] = state_dict[key]
del state_dict[key]
for weight_name in list(state_dict.keys()):
if state_dict[weight_name].ndim == 4:
state_dict[weight_name] = state_dict[weight_name].transpose((3, 2, 0, 1)).copy(order='C')
if state_dict[weight_name].ndim == 2:
state_dict[weight_name] = state_dict[weight_name].transpose((1, 0)).copy(order='C')
for weight_name in list(state_dict.keys()):
state_dict[weight_name] = torch.from_numpy(state_dict[weight_name])
torch.save(state_dict, args.pytorch_model)