-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_ISPRS.py
516 lines (455 loc) · 24.7 KB
/
train_ISPRS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import time
from utils import np, unet, weighted_categorical_crossentropy, Adam, SGD, load_model, K
from ResUnet_a.model2 import Resunet_a
from multitasking_utils import Tanimoto_dual_loss
import argparse
import os
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from prettytable import PrettyTable
import tensorflow as tf
from tqdm import tqdm
import tensorflow.keras.models as KM
import tensorflow.keras as KE
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def compute_mcc(tp, tn, fp, fn):
mcc = (tp*tn - fp*fn) / tf.math.sqrt((tp + fp)*(tp + fn)*(tn + fp)*(tn+fn))
return mcc
def add_tensorboard_scalars(train_writer, val_writer, epoch,
metric_name, train_loss, val_loss,
train_acc=None, val_acc=None, val_mcc=None):
with train_writer.as_default():
tf.summary.scalar(metric_name+'/Loss', train_loss,
step=epoch)
if train_acc is not None:
tf.summary.scalar(metric_name+'/Accuracy', train_acc,
step=epoch)
with val_writer.as_default():
tf.summary.scalar(metric_name+'/Loss', val_loss,
step=epoch)
if val_acc is not None:
tf.summary.scalar(metric_name+'/Accuracy', val_acc,
step=epoch)
if val_mcc is not None:
tf.summary.scalar(metric_name+'/MCC', val_mcc,
step=epoch)
def train_model(args, net, x_train_paths, y_train_paths, x_val_paths,
y_val_paths, batch_size, epochs, x_shape_batch, y_shape_batch,
patience=10, delta=0.001, metrics_names=None):
# patches_train = x_train_paths
print('Start training...')
print('='*60)
print(f'Training on {len(x_train_paths)} images')
print(f'Validating on {len(x_val_paths)} images')
print('='*60)
print(f'Total Epochs: {epochs}')
# Initialize tensorboard metrics
train_summary_writer = tf.summary.create_file_writer(
os.path.join(args.results_path, 'logs', 'train'))
val_summary_writer = tf.summary.create_file_writer(
os.path.join(args.results_path, 'logs', 'val'))
# Initialize as maximum possible number
min_loss = float('inf')
cont = 0
x_train_b = np.zeros(x_shape_batch, dtype=np.float32)
y_train_h_b_seg = np.zeros(y_shape_batch, dtype=np.float32)
x_val_b = np.zeros(x_shape_batch, dtype=np.float32)
y_val_h_b_seg = np.zeros(y_shape_batch, dtype=np.float32)
if args.multitasking:
# Bounds
y_train_h_b_bound = np.zeros(y_shape_batch, dtype=np.float32)
y_val_h_b_bound = np.zeros(y_shape_batch, dtype=np.float32)
# Dists
y_train_h_b_dist = np.zeros(y_shape_batch, dtype=np.float32)
y_val_h_b_dist = np.zeros(y_shape_batch, dtype=np.float32)
# Colors
y_train_h_b_color = np.zeros((y_shape_batch[0],
y_shape_batch[1],
y_shape_batch[2], 3),
dtype=np.float32)
y_val_h_b_color = np.zeros((y_shape_batch[0],
y_shape_batch[1],
y_shape_batch[2], 3),
dtype=np.float32)
# print(net.metrics_names)
print(net.output_names)
for epoch in range(epochs):
# metrics_len = len(net.metrics_names)
metrics_len = len(metrics_names)
loss_tr = np.zeros((1, metrics_len))
loss_val = np.zeros((1, metrics_len))
# Computing the number of batchs on training
n_batchs_tr = len(x_train_paths)//batch_size
# Random shuffle the data
if not args.multitasking:
(x_train_paths_rand,
y_train_paths_rand_seg) = shuffle(x_train_paths, y_train_paths[0])
else:
(x_train_paths_rand, y_train_paths_rand_seg,
y_train_paths_rand_bound, y_train_paths_rand_dist,
y_train_paths_rand_color) \
= shuffle(x_train_paths, y_train_paths[0], y_train_paths[1],
y_train_paths[2], y_train_paths[3])
# Training the network per batch
for batch in tqdm(range(n_batchs_tr), desc="Train"):
x_train_paths_b = x_train_paths_rand[batch * batch_size:(batch + 1) * batch_size]
y_train_paths_b_seg = y_train_paths_rand_seg[batch * batch_size:(batch + 1) * batch_size]
# if args.multitasking:
# y_train_paths_b_bound = y_train_paths_rand_bound[batch * batch_size:(batch + 1) * batch_size]
# y_train_paths_b_dist = y_train_paths_rand_dist[batch * batch_size:(batch + 1) * batch_size]
# y_train_paths_b_color = y_train_paths_rand_color[batch * batch_size:(batch + 1) * batch_size]
for b in range(batch_size):
x_train_b[b] = np.load(x_train_paths_b[b])
y_train_h_b_seg[b] = np.load(y_train_paths_b_seg[b]).astype(np.float32)
# if args.multitasking:
# y_train_h_b_bound[b] = np.load(y_train_paths_b_bound[b])
# y_train_h_b_dist[b] = np.load(y_train_paths_b_dist[b])
# y_train_h_b_color[b] = np.load(y_train_paths_b_color[b])
if not args.multitasking:
loss_tr = loss_tr + net.train_on_batch(x_train_b, y_train_h_b_seg)
else:
# Get paths per batch on multitasking labels
y_train_paths_b_bound = y_train_paths_rand_bound[batch * batch_size:(batch + 1) * batch_size]
y_train_paths_b_dist = y_train_paths_rand_dist[batch * batch_size:(batch + 1) * batch_size]
y_train_paths_b_color = y_train_paths_rand_color[batch * batch_size:(batch + 1) * batch_size]
# Load multitasking labels
for b in range(batch_size):
y_train_h_b_bound[b] = np.load(y_train_paths_b_bound[b]).astype(np.float32)
y_train_h_b_dist[b] = np.load(y_train_paths_b_dist[b]).astype(np.float32)
y_train_h_b_color[b] = np.load(y_train_paths_b_color[b]).astype(np.float32)
y_train_b = {"seg": y_train_h_b_seg}
y_train_b['bound'] = y_train_h_b_bound
y_train_b['dist'] = y_train_h_b_dist
y_train_b['color'] = y_train_h_b_color
loss_tr = loss_tr + net.train_on_batch(x=x_train_b, y=y_train_b, return_dict=False)
# Training loss; Divide by the number of batches
# print(loss_tr)
loss_tr = loss_tr/n_batchs_tr
# Computing the number of batchs on validation
n_batchs_val = len(x_val_paths)//batch_size
# Evaluating the model in the validation set
for batch in tqdm(range(n_batchs_val), desc="Validation"):
x_val_paths_b = x_val_paths[batch * batch_size:(batch + 1) * batch_size]
y_val_paths_b_seg = y_val_paths[0][batch * batch_size:(batch + 1) * batch_size]
for b in range(batch_size):
x_val_b[b] = np.load(x_val_paths_b[b])
y_val_h_b_seg[b] = np.load(y_val_paths_b_seg[b]).astype(np.float32)
if not args.multitasking:
loss_val = loss_val + net.test_on_batch(x_val_b, y_val_h_b_seg)
else:
# Get paths per batch on multitasking labels
y_val_paths_b_bound = y_val_paths[1][batch * batch_size:(batch + 1) * batch_size]
y_val_paths_b_dist = y_val_paths[2][batch * batch_size:(batch + 1) * batch_size]
y_val_paths_b_color = y_val_paths[3][batch * batch_size:(batch + 1) * batch_size]
# Load multitasking labels
for b in range(batch_size):
y_val_h_b_bound[b] = np.load(y_val_paths_b_bound[b]).astype(np.float32)
y_val_h_b_dist[b] = np.load(y_val_paths_b_dist[b]).astype(np.float32)
y_val_h_b_color[b] = np.load(y_val_paths_b_color[b]).astype(np.float32)
# Dict template: y_val_b = {"segmentation": y_val_h_b_seg,
# "boundary": y_val_h_b_bound, "distance": y_val_h_b_dist,
# "color": y_val_h_b_color}
y_val_b = {"seg": y_val_h_b_seg}
y_val_b['bound'] = y_val_h_b_bound
y_val_b['dist'] = y_val_h_b_dist
y_val_b['color'] = y_val_h_b_color
loss_val = loss_val + net.test_on_batch(x=x_val_b, y=y_val_b)
loss_val = loss_val/n_batchs_val
# train_metrics = dict(zip(net.metrics_names, loss_tr.tolist()[0]))
# val_metrics = dict(zip(net.metrics_names, loss_val.tolist()[0]))
train_metrics = dict(zip(metrics_names, loss_tr.tolist()[0]))
val_metrics = dict(zip(metrics_names, loss_val.tolist()[0]))
if not args.multitasking:
# print(f'loss_val shape: {loss_val.shape}')
train_loss = train_metrics['loss']
train_acc = train_metrics['accuracy']
val_loss = val_metrics['loss']
val_acc = val_metrics['accuracy']
mcc = compute_mcc(val_metrics['true_positives'],
val_metrics['true_negatives'],
val_metrics['false_positives'],
val_metrics['false_negatives'])
print(f"Epoch: {epoch} " +
f"Training loss: {train_loss :.5f} " +
f"Train acc.: {100*train_acc:.5f}% " +
f"Validation loss: {val_loss :.5f} " +
f"Validation acc.: {100*val_acc:.5f}%")
add_tensorboard_scalars(train_summary_writer, val_summary_writer,
epoch, 'Total', train_loss, val_loss,
train_acc, val_acc, val_mcc=mcc)
else:
mcc = compute_mcc(val_metrics['seg_true_positives'],
val_metrics['seg_true_negatives'],
val_metrics['seg_false_positives'],
val_metrics['seg_false_negatives'])
metrics_table = PrettyTable()
metrics_table.title = f'Epoch: {epoch}'
metrics_table.field_names = ['Task', 'Loss', 'Val Loss',
'Acc %', 'Val Acc %']
metrics_table.add_row(['Seg', round(train_metrics['seg_loss'], 5),
round(val_metrics['seg_loss'], 5),
round(100*train_metrics['seg_accuracy'], 5),
round(100*val_metrics['seg_accuracy'], 5)])
add_tensorboard_scalars(train_summary_writer, val_summary_writer,
epoch, 'Segmentation',
train_metrics['seg_loss'],
val_metrics['seg_loss'],
train_metrics['seg_accuracy'],
val_metrics['seg_accuracy'],
val_mcc=mcc)
metrics_table.add_row(['Bound',
round(train_metrics['bound_loss'], 5),
round(val_metrics['bound_loss'], 5),
0, 0])
add_tensorboard_scalars(train_summary_writer,
val_summary_writer,
epoch, 'Boundary',
train_metrics['bound_loss'],
val_metrics['bound_loss'])
metrics_table.add_row(['Dist',
round(train_metrics['dist_loss'], 5),
round(val_metrics['dist_loss'], 5),
0, 0])
add_tensorboard_scalars(train_summary_writer,
val_summary_writer,
epoch, 'Distance',
train_metrics['dist_loss'],
val_metrics['dist_loss'])
metrics_table.add_row(['Color',
round(train_metrics['color_loss'], 5),
round(val_metrics['color_loss'], 5),
0, 0])
add_tensorboard_scalars(train_summary_writer,
val_summary_writer,
epoch, 'Color',
train_metrics['color_loss'],
val_metrics['color_loss'])
metrics_table.add_row(['Total', round(train_metrics['loss'], 5),
round(val_metrics['loss'], 5),
0, 0])
add_tensorboard_scalars(train_summary_writer,
val_summary_writer,
epoch, 'Total',
train_metrics['loss'],
val_metrics['loss'])
val_loss = val_metrics['loss']
print(metrics_table)
# Early stop
# Save the model when loss is minimum
# Stop the training if the loss don't decreases after patience epochs
if val_loss >= min_loss + delta:
cont += 1
print(f'EarlyStopping counter: {cont} out of {patience}')
if cont >= patience:
print("Early Stopping! \t Training Stopped")
# print("Saving model...")
# net.save(os.path.join(args.checkpoint, 'model_early_stopping.h5'))
return net
else:
cont = 0
min_loss = val_loss
print("Saving best model...")
net.save(os.path.join(args.results_path, 'best_model.h5'))
# End functions definition -----------------------------------------------------
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--resunet_a", help="choose resunet-a model or not",
type=str2bool, default=False)
parser.add_argument("--multitasking", help="choose resunet-a multitasking \
or not", type=str2bool, default=False)
parser.add_argument("--gpu_parallel",
help="choose 1 to train one multiple gpu",
type=str2bool, default=False)
parser.add_argument("-rp", "--results_path", help="Path where to save logs and model checkpoint. \
Logs and checkpoint will be saved inside this folder.",
type=str, default='./results/results_run1')
parser.add_argument("-cp", "--checkpoint_path", help="Path where to load \
model checkpoint to continue training, if needed",
type=str, default=None)
parser.add_argument("-dp", "--dataset_path", help="Path where to load dataset",
type=str, default='./DATASETS/patch_size=256_stride=32')
parser.add_argument("-bs", "--batch_size", help="Batch size on training",
type=int, default=4)
parser.add_argument("-lr", "--learning_rate",
help="Learning rate on training",
type=float, default=1e-3)
parser.add_argument("--loss", help="choose which loss you want to use",
type=str, default='weighted_cross_entropy',
choices=['weighted_cross_entropy', 'cross_entropy',
'tanimoto'])
parser.add_argument("-optm", "--optimizer",
help="Choose which optmizer to use",
type=str, choices=['adam', 'sgd'], default='adam')
parser.add_argument("--num_classes", help="Number of classes",
type=int, default=5)
parser.add_argument("--epochs", help="Number of epochs",
type=int, default=500)
parser.add_argument("-ps", "--patch_size", help="Size of patches extracted",
type=int, default=256)
parser.add_argument("--bound_weight", help="Boundary loss weight",
type=float, default=1.0)
parser.add_argument("--dist_weight", help="Distance transform loss weight",
type=float, default=1.0)
parser.add_argument("--color_weight", help="HSV transform loss weight",
type=float, default=1.0)
args = parser.parse_args()
print('='*30 + 'INITIALIZING' + '='*30)
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
print(f'GPUS DEVICES: {gpu_devices}')
for device in gpu_devices:
print(device)
tf.config.experimental.set_memory_growth(device, True)
strategy = tf.distribute.MirroredStrategy()
print(f'Number of devices: {strategy.num_replicas_in_sync}')
tf.config.experimental_run_functions_eagerly(False)
#tf.config.run_functions_eagerly(True)
# Load images
root_path = args.dataset_path
train_path = os.path.join(root_path, 'train')
patches_tr = [os.path.join(train_path, name)
for name in os.listdir(train_path)]
ref_path = os.path.join(root_path, 'labels/seg')
patches_tr_lb_h = [os.path.join(ref_path, name) for name
in os.listdir(ref_path)]
if args.multitasking:
ref_bound_path = os.path.join(root_path, 'labels/bound')
patches_bound_labels = [os.path.join(ref_bound_path, name) for name
in os.listdir(ref_bound_path)]
ref_dist_path = os.path.join(root_path, 'labels/dist')
patches_dist_labels = [os.path.join(ref_dist_path, name) for name
in os.listdir(ref_dist_path)]
ref_color_path = os.path.join(root_path, 'labels/color')
patches_color_labels = [os.path.join(ref_color_path, name) for name
in os.listdir(ref_color_path)]
if args.multitasking:
patches_tr, patches_val, patches_tr_lb_h, patches_val_lb_h, patches_bound_labels_tr, patches_bound_labels_val, patches_dist_labels_tr, patches_dist_labels_val, patches_color_labels_tr, patches_color_labels_val = train_test_split(patches_tr, patches_tr_lb_h, patches_bound_labels, patches_dist_labels, patches_color_labels, test_size=0.2, random_state=42)
else:
patches_tr, patches_val, patches_tr_lb_h, patches_val_lb_h = train_test_split(patches_tr, patches_tr_lb_h, test_size=0.2, random_state=42)
if args.multitasking:
'''
index maps:
0 --> segmentation
1 --> boundary
2 --> distance
3 --> color
'''
y_paths = [patches_tr_lb_h, patches_bound_labels_tr,
patches_dist_labels_tr, patches_color_labels_tr]
val_paths = [patches_val_lb_h, patches_bound_labels_val,
patches_dist_labels_val, patches_color_labels_val]
else:
y_paths = [patches_tr_lb_h]
val_paths = [patches_val_lb_h]
rows = args.patch_size
cols = args.patch_size
channels = 3
# Define optimizer
if args.optimizer == 'adam':
optm = Adam(lr=args.learning_rate, beta_1=0.9)
elif args.optimizer == 'sgd':
optm = SGD(lr=args.learning_rate, momentum=0.8)
# Define Loss
print('='*60)
if args.loss == 'cross_entropy':
print('Using Cross Entropy')
# loss = "categorical_crossentropy"
loss = tf.keras.losses.CategoricalCrossentropy()
loss_bound = tf.keras.losses.BinaryCrossentropy()
loss_reg = tf.keras.losses.MeanSquaredError()
elif args.loss == "tanimoto":
print('Using Tanimoto Dual Loss')
loss = Tanimoto_dual_loss()
loss_bound = Tanimoto_dual_loss()
loss_reg = Tanimoto_dual_loss()
else:
print('Using Weighted cross entropy')
weights = [4.34558461, 2.97682037, 3.92124661, 5.67350328, 374.0300152]
print(weights)
loss = weighted_categorical_crossentropy(weights)
loss_bound = tf.keras.losses.BinaryCrossentropy()
loss_reg = tf.keras.losses.MeanSquaredError()
print('='*60)
# Compile Models
with strategy.scope():
if args.checkpoint_path is None:
if args.resunet_a:
if args.multitasking:
print('Multitasking enabled!')
losses = {'seg': loss, 'bound': loss_bound,
'dist': loss_reg, 'color': loss_reg}
lossWeights = {'seg': 1.0, 'bound': args.bound_weight,
'dist': args.dist_weight, 'color': args.color_weight}
print(f'Loss Weights: {lossWeights}')
resuneta = Resunet_a((rows, cols, channels), args.num_classes, args)
model = resuneta.model
model.summary()
metrics_dict = {'seg': ['accuracy', tf.keras.metrics.TruePositives(),
tf.keras.metrics.FalsePositives(),
tf.keras.metrics.TrueNegatives(),
tf.keras.metrics.FalseNegatives()]}
model.compile(optimizer=optm, loss=losses,
loss_weights=lossWeights, metrics=metrics_dict)
else:
print("Using simple ResUnet-a")
resuneta = Resunet_a((rows, cols, channels), args.num_classes, args)
model = resuneta.model
model.summary()
model.compile(optimizer=optm, loss=loss, metrics=['accuracy', tf.keras.metrics.TruePositives(),
tf.keras.metrics.FalsePositives(),
tf.keras.metrics.TrueNegatives(),
tf.keras.metrics.FalseNegatives()])
print('ResUnet-a compiled!')
else:
model = unet((rows, cols, channels), args.num_classes)
model.summary()
model.compile(optimizer=optm, loss=loss, metrics=['accuracy', tf.keras.metrics.TruePositives(),
tf.keras.metrics.FalsePositives(),
tf.keras.metrics.TrueNegatives(),
tf.keras.metrics.FalseNegatives()])
else:
# load checkpoint compiled
print(f"[INFO] loading {args.checkpoint_path}...")
model = load_model(args.checkpoint_path)
model.summary()
# update the learning rate
print(f"[INFO] old learning rate: {K.get_value(model.optimizer.lr)}")
K.set_value(model.optimizer.lr, args.learning_rate)
print(f"[INFO] new learning rate: {K.get_value(model.optimizer.lr)}")
# Create folder for logs and model checkpoint
if not os.path.exists(args.results_path):
os.makedirs(args.results_path)
# train the model
if args.multitasking:
x_shape_batch = (args.batch_size, args.patch_size, args.patch_size, 3)
y_shape_batch = (args.batch_size, args.patch_size, args.patch_size, 5)
start_time = time.time()
metrics_names = ['loss', 'seg_loss', 'bound_loss', 'dist_loss',
'color_loss', 'seg_accuracy', 'seg_true_positives',
'seg_false_positives', 'seg_true_negatives',
'seg_false_negatives']
train_model(args, model, patches_tr, y_paths, patches_val, val_paths,
args.batch_size, args.epochs,
x_shape_batch=x_shape_batch, y_shape_batch=y_shape_batch,
metrics_names=metrics_names)
end_time = time.time() - start_time
print(f'\nTraining took: {end_time / 3600} \n')
else:
x_shape_batch = (args.batch_size, args.patch_size, args.patch_size, 3)
y_shape_batch = (args.batch_size, args.patch_size, args.patch_size, 5)
start_time = time.time()
metrics_names = ['loss', 'accuracy', 'true_positives', 'false_positives',
'true_negatives', 'false_negatives']
train_model(args, model, patches_tr, y_paths, patches_val, val_paths,
args.batch_size, args.epochs,
x_shape_batch=x_shape_batch, y_shape_batch=y_shape_batch,
metrics_names=metrics_names)
end_time = time.time() - start_time
print(f'\nTraining took: {end_time / 3600} \n')