-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.R
313 lines (291 loc) · 18.3 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
library(dplyr)
library(memoise)
library(rjson)
RIGHT_TIME <- 1
MINIMUM_DELAY <- 5
HEAVY_DELAY <- 30
PASSENGERS_JOURNEYS_PER_DAY_UK_WIDE <- 4360000
# AVG_DELAYED_TRAINS_PER_DAY <- 2219
# We use this to infer the total lost minutes because we don't have passenger numbers
AVG_DELAYED_TRAINS_PER_DAY <- 2946
source('./download-from-S3.R')
source('./download-corpus.R')
# let's see integer numerics as such!
options(digits=12)
# REMEMBER TO TURN BACK ON!
# options(warn = -1)
# Not all location data shows the arrival of trains at intermediate stations
# in a journey, typically when the timetable sets identical arrival and
# re-departure times.
# This function integrates the data for the specified stanox or list of stanox
# with all the missing arrivals, inferred from the existence of previous
# events in the life of the train, and returns that stanox data only.
integrate_with_missing_arrivals <- memoise(function (day_data, stanox) {
if (is.vector(stanox) && (length(stanox) > 1)) {
return(unique(do.call(rbind, lapply(stanox, function (stanox) integrate_with_missing_arrivals(day_data, stanox)))))
} else {
# extracts the data that exists already about this location
location_data <- day_data[day_data$body.loc_stanox == stanox, ]
# find the list of trains that I can only see departing
trains_that_depart_only <- unique(location_data$body.train_id[!(location_data$body.train_id %in% unique(location_data[location_data$body.event_type == 'ARRIVAL', ]$body.train_id))])
trains_that_depart_only <- location_data[location_data$body.train_id %in% trains_that_depart_only, c("body.train_id", "body.gbtt_timestamp")]
if (nrow(trains_that_depart_only) > 0) {
# find the earliest recorded event in the train life
earliest_events <- day_data %.%
filter(body.train_id %in% trains_that_depart_only$body.train_id) %.%
group_by(body.train_id) %.%
summarise(earliest_event = min(body.gbtt_timestamp))
# if the earliest event is earlier than the departure at this station,
# the train must have arrived at this station, too!
trains_that_must_have_arrived <- inner_join(trains_that_depart_only, earliest_events, by = "body.train_id")
trains_that_must_have_arrived <- unique(trains_that_must_have_arrived[trains_that_must_have_arrived$body.gbtt_timestamp > trains_that_must_have_arrived$earliest_event, ]$body.train_id)
if (length(trains_that_must_have_arrived) > 0) {
# add dummy arrival records
dummy_arrivals <- location_data[(location_data$body.train_id %in% trains_that_must_have_arrived) & (location_data$body.event_type == 'DEPARTURE'), ]
dummy_arrivals$body.event_type <- 'ARRIVAL'
location_data <<- rbind(location_data, dummy_arrivals)
}
}
return(location_data)
}
})
# If the 'stanox' parameter is specified (single stanox or vector of stanox codes),
# this function calculates the average delay for all trains arriving to or
# departing from that station as recorded in 'day_data'. Otherwise, it returns a
# data.frame with all average delays for each stanox listed in 'clean_day_data'.
calculate_station_rank <- memoise(function (day_data, stanox = NULL) {
if (is.null(stanox)) {
# if stanox is not specified, do the job for all stations
return(calculate_station_rank(day_data, sort(unique(day_data$body.loc_stanox))))
} else if (is.vector(stanox) && (length(stanox) > 1)) {
# if stanox is a vector, do the job for the listed stations only
return(do.call(rbind, lapply(stanox, function (stanox) calculate_station_rank(day_data, stanox))))
} else {
# if stanox is not a vector, do the job for that station only
# station_data_only <- integrate_with_missing_arrivals(day_data, stanox)
# if you need turning off integration, replace the line above with this below:
station_data_only <- day_data[day_data$body.loc_stanox == stanox, ]
# calculate the stats for the location
no_of_trains <- length(unique(station_data_only$body.train_id))
no_of_right_time_trains <- length(unique(station_data_only[station_data_only$body.timetable_variation <= RIGHT_TIME, ]$body.train_id))
perc_of_right_time_trains <- no_of_right_time_trains / no_of_trains
delayed_station_data_only <- station_data_only[station_data_only$body.timetable_variation >= MINIMUM_DELAY, ]
no_of_delayed_trains <- length(unique(delayed_station_data_only$body.train_id))
perc_of_delayed_trains <- no_of_delayed_trains / no_of_trains
no_of_heavily_delayed_trains <- length(unique(delayed_station_data_only[delayed_station_data_only$body.timetable_variation >= HEAVY_DELAY, ]$body.train_id))
perc_of_heavily_delayed_trains <- no_of_heavily_delayed_trains / no_of_trains
not_right_time_delays <- station_data_only[station_data_only$body.timetable_variation > RIGHT_TIME, "body.timetable_variation"]
average_delay <- ifelse(length(not_right_time_delays) > 0, mean(not_right_time_delays), 0)
corpus <- download_corpus()
corpus$Entries.Total <- as.numeric(corpus$Entries.Total)
# Doesn't take into account fluctuations in no. of trains - adjusted globally
station_people_weight <- corpus[corpus$STANOX == stanox, "Entries.Total"] / sum(corpus[, "Entries.Total"]) * PASSENGERS_JOURNEYS_PER_DAY_UK_WIDE
total_lost_minutes <- average_delay * station_people_weight * (1 - perc_of_right_time_trains)
return(data.frame(
stanox = c(stanox),
no_of_trains = c(no_of_trains),
no_of_right_time_trains = c(no_of_right_time_trains),
perc_of_right_time_trains = c(perc_of_right_time_trains),
no_of_delayed_trains = c(no_of_delayed_trains),
perc_of_delayed_trains = c(perc_of_delayed_trains),
no_of_heavily_delayed_trains = c(no_of_heavily_delayed_trains),
perc_of_heavily_delayed_trains = c(perc_of_heavily_delayed_trains),
average_delay = c(average_delay),
station_people_weight = c(station_people_weight),
total_lost_minutes = c(total_lost_minutes)
))
}
})
# This functions generates a list of c(from = [stanox1], to = [stanox2])
# representing all segments connecting two stations by at least one train that
# does not stop at any intermediate station. The direction of the train is not
# relevant and the segment is represented by the two stanox codes in
# alphabetical order.
generate_all_segments <- memoise(function (day_data) {
# drop the trains that stop at one station only
trains_with_one_station_only <- unique(day_data %.%
group_by(body.train_id) %.%
summarise(no_of_stations = length(unique(body.loc_stanox))) %.%
filter(no_of_stations < 2))
day_data <- day_data[!(day_data$body.train_id %in% trains_with_one_station_only$body.train_id), ]
# the sorting below is instrumental
day_data <- day_data[with(day_data, order(body.train_id, body.gbtt_timestamp)), c("body.train_id", "body.loc_stanox")]
segments <- do.call(rbind, lapply(unique(day_data$body.train_id), function (train_id) {
# for each train, identify all stations it goes through
stations <- unique(day_data[day_data$body.train_id == train_id, ]$body.loc_stanox)
return(do.call(rbind, lapply(1:(length(stations) - 1), function (i) {
# for each station, create one segment between each consecutive
# station
segment <- sort(c(stations[i], stations[i+1]))
return(data.frame(from_stanox = c(segment[1]), to_stanox = c(segment[2])))
})))
}))
return(unique(segments))
})
calculate_segment_rank <- memoise(function (day_data, from_stanox = NULL, to_stanox = NULL) {
if (is.null(from_stanox) || is.null(to_stanox)) {
segments <- generate_all_segments(day_data)
return(do.call(rbind, lapply(lapply(split(segments, seq_along(segments[, 1])), as.list), function (segment) calculate_segment_rank(day_data, segment$from_stanox, segment$to_stanox))))
} else {
if (from_stanox > to_stanox) { temp <- from_stanox; from_stanox <- to_stanox; to_stanox <- temp }
segment_trains <- intersect(
unique(day_data[day_data$body.loc_stanox == from_stanox, ]$body.train_id),
unique(day_data[day_data$body.loc_stanox == to_stanox, ]$body.train_id)
)
segment_data <- integrate_with_missing_arrivals(day_data, c(from_stanox, to_stanox))
segment_data <- segment_data[segment_data$body.train_id %in% segment_trains, ]
no_of_trains <- length(unique(segment_data$body.train_id))
right_time_trains <- segment_data[segment_data$body.timetable_variation <= RIGHT_TIME, ]
no_of_right_time_trains <- length(unique(right_time_trains$body.train_id))
perc_of_right_time_trains <- no_of_right_time_trains / no_of_trains
delayed_trains <- segment_data[segment_data$body.timetable_variation >= MINIMUM_DELAY, ]
no_of_delayed_trains <- length(unique(delayed_trains$body.train_id))
perc_of_delayed_trains <- no_of_delayed_trains / no_of_trains
heavily_delayed_trains <- delayed_trains[delayed_trains$body.timetable_variation >= HEAVY_DELAY, ]
no_of_heavily_delayed_trains <- length(unique(heavily_delayed_trains$body.train_id))
perc_of_heavily_delayed_trains <- no_of_heavily_delayed_trains / no_of_trains
not_right_time_delays <- segment_data[segment_data$body.timetable_variation > RIGHT_TIME, "body.timetable_variation"]
average_delay <- ifelse(length(not_right_time_delays) > 0, mean(not_right_time_delays), 0)
return(data.frame(
from_stanox = c(from_stanox),
to_stanox = c(to_stanox),
no_of_trains = c(no_of_trains),
no_of_right_time_trains = c(no_of_right_time_trains),
perc_of_right_time_trains = c(perc_of_right_time_trains),
no_of_delayed_trains = c(no_of_delayed_trains),
perc_of_delayed_trains = c(perc_of_delayed_trains),
no_of_heavily_delayed_trains = c(no_of_heavily_delayed_trains),
perc_of_heavily_delayed_trains = c(perc_of_heavily_delayed_trains),
average_delay = c(average_delay)
))
}
})
# when looking at the data in its entirety, a "right time" train is a train
# that was "right time" at all its stops, while a delayed train is a train
# that was delayed at any of its stops.
calculate_day_rank <- function (date_from, date_to = NULL) {
if (class(date_from) != "Date") date_from <- as.Date(date_from, origin = '1970-01-01')
if (!is.null(date_to) && (class(date_to) != "Date")) date_to <- as.Date(date_to, origin = '1970-01-01')
return(calculate_day_rank_memoised(date_from, date_to))
}
calculate_day_rank_memoised <- memoise(function (date_from, date_to) {
date_from <- as.Date(date_from)
if (!is.null(date_to)) {
date_to <- as.Date(date_to)
date_range <- sapply(seq(0, date_to - date_from), function (x) { as.Date(date_from + x) })
return(do.call(rbind, lapply(date_range, function (d) calculate_day_rank(d))))
} else {
cat(paste0("Downloading data for ", date_from, "...\n"))
day_data <- download_data(paste0(formatC(format(date_from, "%Y"), width=4, flag="0"), "-", formatC(format(date_from, "%m"), width=2, flag="0"), "-", formatC(format(date_from, "%d"), width=2, flag="0")))
cat(paste0("Calculating rankings for ", date_from, "...\n"))
stations_ranking <- calculate_station_rank(day_data)
no_of_trains <- length(unique(day_data$body.train_id))
temp <- day_data %.%
group_by(body.train_id) %.%
summarise(
# what about the missing arrivals integration???
no_of_events = length(body.train_id),
no_of_right_time_events = sum(body.timetable_variation <= RIGHT_TIME),
no_of_delayed_events = sum(body.timetable_variation >= MINIMUM_DELAY),
no_of_heavily_delayed_events = sum(body.timetable_variation >= HEAVY_DELAY)
)
no_of_right_time_trains <- nrow(temp[temp$no_of_events == temp$no_of_right_time_events, ])
perc_of_right_time_trains <- no_of_right_time_trains / no_of_trains
no_of_delayed_trains <- nrow(temp[temp$no_of_delayed_events > 1, ])
perc_of_delayed_trains <- no_of_delayed_trains / no_of_trains
no_of_heavily_delayed_trains <- nrow(temp[temp$no_of_heavily_delayed_events > 1, ])
perc_of_heavily_delayed_trains <- no_of_heavily_delayed_trains / no_of_trains
# Hack for number of trains NOT right time
weights <- (stations_ranking$no_of_trains - stations_ranking$no_of_right_time_trains) / (no_of_trains - no_of_right_time_trains)
average_delay <- weighted.mean(stations_ranking$average_delay, weights)
# Lost minutes adjusted by no. of trains
total_lost_minutes <- sum(stations_ranking$total_lost_minutes) * (no_of_delayed_trains / AVG_DELAYED_TRAINS_PER_DAY)
return(data.frame(
date = c(date_from),
no_of_trains = c(no_of_trains),
no_of_right_time_trains = c(no_of_right_time_trains),
perc_of_right_time_trains = c(perc_of_right_time_trains),
no_of_delayed_trains = c(no_of_delayed_trains),
perc_of_delayed_trains = c(perc_of_delayed_trains),
no_of_heavily_delayed_trains = c(no_of_heavily_delayed_trains),
perc_of_heavily_delayed_trains = c(perc_of_heavily_delayed_trains),
average_delay = c(average_delay),
total_lost_minutes = c(total_lost_minutes)
))
}
})
make_geojson <- function (stations_ranking, segments_ranking, filename = NULL) {
# load the latest version of the corpus
corpus <- download_corpus()[, c('STANOX', 'LAT', 'LON', 'Station.Name')]
# drop the stations that have no coordinates
corpus <- corpus[!is.na(corpus$LAT) & !is.na(corpus$LON), ]
stations_ranking <- stations_ranking[stations_ranking$stanox %in% corpus$STANOX, ]
segments_ranking <- segments_ranking[(segments_ranking$from_stanox %in% corpus$STANOX) & (segments_ranking$to_stanox %in% corpus$STANOX), ]
# do some roundings
stations_ranking$perc_of_delayed_trains <- ifelse(stations_ranking$perc_of_delayed_trains > 0, percent(stations_ranking$perc_of_delayed_trains), "0%")
stations_ranking$average_delay <- round(stations_ranking$average_delay, 0)
segments_ranking$average_delay <- round(segments_ranking$average_delay, 0)
# enhancing the station ranking data with the lat lon
# oddly, dplyr does not support different left and right names for joins
names(corpus)[names(corpus) == 'STANOX'] <- 'stanox'
stations_ranking <- left_join(stations_ranking, corpus, by = "stanox")
# enhancing the segment ranking data with the lat lon
names(corpus)[names(corpus) == 'stanox'] <- 'from_stanox'
segments_ranking <- left_join(segments_ranking, corpus, by = "from_stanox")
names(segments_ranking)[names(segments_ranking) == 'LAT'] <- 'from_lat'
names(segments_ranking)[names(segments_ranking) == 'LON'] <- 'from_lon'
names(corpus)[names(corpus) == 'from_stanox'] <- 'to_stanox'
segments_ranking <- left_join(segments_ranking, corpus, by = "to_stanox")
names(segments_ranking)[names(segments_ranking) == 'LAT'] <- 'to_lat'
names(segments_ranking)[names(segments_ranking) == 'LON'] <- 'to_lon'
# to support the segments colouring
min_segment_delay <- min(segments_ranking$average_delay)
max_segment_delay <- max(segments_ranking$average_delay)
min_alpha <- 10
min_opacity <- 30
exp_base <- (100 - min_opacity) ^ (1 / (max_segment_delay - min_segment_delay))
# drops and renames the columns to something more human
stations_ranking <- stations_ranking[, names(stations_ranking) %in% c('Station.Name', 'no_of_trains', 'no_of_delayed_trains', 'perc_of_delayed_trains', 'average_delay', 'LAT', 'LON')]
# TODO: renaming columns by assuming their position is bad!!!
names(stations_ranking) <- c('No. of trains', 'No. of delayed trains', 'Perc. of delayed trains', 'Average delay (min)', 'LAT', 'LON', 'Station name')
# create the JSON
json_structure <- list(
"type" = "FeatureCollection",
"features" = c(
# the stations
unname(lapply(lapply(split(stations_ranking, seq_along(stations_ranking[, 1])), as.list), function (rp) {
return(list(
'type' = "Feature",
'geometry' = list(type = "Point", coordinates = c(rp$LON, rp$LAT)),
'properties' = do.call(c, list(
rp[names(rp) %in% c('No. of trains', 'No. of delayed trains', 'Perc. of delayed trains', 'Average delay (min)', 'Station name')],
"marker-size" = "large",
"marker-symbol" = "rail"
))
))
})),
# the segments
unname(lapply(lapply(split(segments_ranking, seq_along(segments_ranking[, 1])), as.list), function (segment) {
return(list(
'type' = "Feature",
'geometry' = list(type = "LineString", coordinates = list(c(segment$from_lon, segment$from_lat), c(segment$to_lon, segment$to_lat))),
properties = do.call(c, list(
# uncomment below if you want all stats calculated for
# segments to be part of the GeoJSON
# segment[!(names(segment) %in% c('from_stanox', 'to_stanox', 'from_lat', 'from_lon', 'to_lat', 'to_lon'))],
"Average delay (min)" = segment$average_delay,
"stroke" = ifelse(segment$average_delay == 0, "#BEBEBE", "#FF0000"),
"stroke-opacity" = ifelse(segment$average_delay == 0, min_opacity, round((min_alpha + exp_base ^ (segment$average_delay - min_segment_delay)) / 100, 2)),
"stroke-width" = ifelse(segment$average_delay == 0, 2, 3)
))
))
}))
)
)
if(!is.null(filename)) {
fileConn <- file(filename)
writeLines(toJSON(json_structure), fileConn)
close(fileConn)
}
return(json_structure)
}