-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
126 lines (108 loc) · 4.44 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Python In-built packages
from pathlib import Path
import PIL
# External packages
import streamlit as st
from streamlit_login_auth_ui.widgets import __login__
from structures.essentials import load_model
# Local Modules
import settings
import helper
# Setting page layout
st.set_page_config(
page_title="S.A.D.A.K",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("S.A.D.A.K")
__login__obj = __login__(auth_token = settings.COURIER_API_KEY,
company_name = "S.A.D.A.K",
width = 200, height = 250,
logout_button_name = 'Logout', hide_menu_bool = False,
hide_footer_bool = False,
lottie_url = 'https://assets2.lottiefiles.com/packages/lf20_jcikwtux.json')
LOGGED_IN = __login__obj.build_login_ui()
if LOGGED_IN == True:
# Main page heading
# Sidebar
st.sidebar.header("Configuration")
helper.startup()
# Model Options
model_type = st.sidebar.radio(
"Select Task", ['Detection', 'Segmentation'])
confidence = float(st.sidebar.slider(
"Select Model Confidence", 25, 100, 40)) / 100
# Selecting Detection Or Segmentation
if model_type == 'Detection':
model_path = Path(settings.DETECTION_MODEL)
elif model_type == 'Segmentation':
model_path = Path(settings.SEGMENTATION_MODEL)
# Load Pre-trained ML Model
try:
model = load_model(model_path)
except Exception as ex:
st.error(f"Unable to load model. Check the specified path: {model_path}")
st.error(ex)
st.sidebar.header("Image/Video Config")
source_radio = st.sidebar.radio(
"Select Source", settings.SOURCES_LIST)
source_img = None
# If image is selected
if source_radio == settings.IMAGE:
source_img = st.sidebar.file_uploader(
"Choose an image...", type=("jpg", "jpeg", "png", 'bmp', 'webp'))
col1, col2 = st.columns(2)
with col1:
try:
if source_img is None:
default_image_path = str(settings.DEFAULT_IMAGE)
default_image = PIL.Image.open(default_image_path)
st.image(default_image_path, caption="Default Image",
use_column_width=True)
else:
uploaded_image = PIL.Image.open(source_img)
st.image(source_img, caption="Uploaded Image",
use_column_width=True)
except Exception as ex:
st.error("Error occurred while opening the image.")
st.error(ex)
with col2:
if source_img is None:
default_detected_image_path = str(settings.DEFAULT_DETECT_IMAGE)
default_detected_image = PIL.Image.open(
default_detected_image_path)
st.image(default_detected_image_path, caption='Detected Image',
use_column_width=True)
else:
if st.sidebar.button('Detect Objects'):
res = model.predict(uploaded_image,
conf=confidence
)
boxes = res[0].boxes
res_plotted = res[0].plot()[:, :, ::-1]
st.image(res_plotted, caption='Detected Image',
use_column_width=True)
try:
with st.expander("Detection Results"):
for box in boxes:
st.write(box.data)
except Exception as ex:
# st.write(ex)
st.write("No image is uploaded yet!")
elif source_radio == settings.VIDEO:
helper.play_stored_video(confidence, model)
elif source_radio == settings.RTSP:
helper.play_rtsp_stream(confidence, model)
elif source_radio == settings.YOUTUBE:
helper.play_youtube_video(confidence, model)
elif source_radio == settings.ENCROACHMENT:
helper.enchroachment()
elif source_radio == settings.JUNCTION:
helper.junctionEvaluationDataset()
elif source_radio == settings.JUNCTIONEVAL:
helper.junctionEvaluation()
elif source_radio == settings.BENCHMARKING:
helper.benchMarking()
else:
st.error("Please select a valid source type!")