-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsettings.py
231 lines (202 loc) · 5.49 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from pathlib import Path
import sys
import supervision as sv
import os
import streamlit as st
# Get the absolute path of the current file
FILE = Path(__file__).resolve()
# Get the parent directory of the current file
ROOT = FILE.parent
# Add the root path to the sys.path list if it is not already there
if ROOT not in sys.path:
sys.path.append(str(ROOT))
# Get the relative path of the root directory with respect to the current working directory
#ROOT = ROOT.relative_to(Path.cwd())
# Sources
IMAGE = 'Image'
VIDEO = 'Video'
RTSP = 'RTSP'
YOUTUBE = 'YouTube'
ENCROACHMENT = 'Encroachment'
JUNCTION = 'Junction Evaluation Dataset'
JUNCTIONEVAL = 'Junction Evaluation'
BENCHMARKING = "Benchmarking"
SOURCES_LIST = [IMAGE, VIDEO, RTSP, YOUTUBE, ENCROACHMENT, JUNCTION, JUNCTIONEVAL,BENCHMARKING]
DATASET_DIR = ROOT / 'analysis'
DATASET_DIR_ACCURACY = DATASET_DIR/'accuracy'
DATASET_DIR_ENCROACHMENT = DATASET_DIR/'encroachments'
ENCROACHMENT_DICT = {}
DATASET_DIR_FLOW = DATASET_DIR_ACCURACY/'Flow Rate'
FLOW_DICT={}
DATASET_DIR_QUEUE = DATASET_DIR_ACCURACY/'Queue Length'
QUEUE_DICT={}
# Images config
IMAGES_DIR = ROOT / 'images'
DEFAULT_IMAGE = IMAGES_DIR / 'default.png'
DEFAULT_DETECT_IMAGE = IMAGES_DIR / 'default_detected.png'
VIDEOS_DICT = {}
EVALUATION_DICT = {}
FINAL_DICT = {}
COURIER_API_KEY = st.secrets["COURIER_API_KEY"]
ENCRYPTION_KEY = st.secrets["CRYPTO_KEY"]
CLASSES = {0: 'person',
1: 'bicycle',
2: 'car',
3: 'motorcycle',
4: 'airplane',
5: 'bus',
6: 'train',
7: 'truck',
8: 'boat',
9: 'traffic light',
10: 'fire hydrant',
11: 'stop sign',
12: 'parking meter',
13: 'bench',
14: 'bird',
15: 'cat',
16: 'dog',
17: 'horse',
18: 'sheep',
19: 'cow',
20: 'elephant',
21: 'bear',
22: 'zebra',
23: 'giraffe',
24: 'backpack',
25: 'umbrella',
26: 'handbag',
27: 'tie',
28: 'suitcase',
29: 'frisbee',
30: 'skis',
31: 'snowboard',
32: 'sports ball',
33: 'kite',
34: 'baseball bat',
35: 'baseball glove',
36: 'skateboard',
37: 'surfboard',
38: 'tennis racket',
39: 'bottle',
40: 'wine glass',
41: 'cup',
42: 'fork',
43: 'knife',
44: 'spoon',
45: 'bowl',
46: 'banana',
47: 'apple',
48: 'sandwich',
49: 'orange',
50: 'broccoli',
51: 'carrot',
52: 'hot dog',
53: 'pizza',
54: 'donut',
55: 'cake',
56: 'chair',
57: 'couch',
58: 'potted plant',
59: 'bed',
60: 'dining table',
61: 'toilet',
62: 'tv',
63: 'laptop',
64: 'mouse',
65: 'remote',
66: 'keyboard',
67: 'cell phone',
68: 'microwave',
69: 'oven',
70: 'toaster',
71: 'sink',
72: 'refrigerator',
73: 'book',
74: 'clock',
75: 'vase',
76: 'scissors',
77: 'teddy bear',
78: 'hair drier',
79: 'toothbrush'}
# iterate over files in
# that directory
# ML Model config
MODEL_DIR = ROOT /'weights'
#print(MODEL_DIR)
DETECTION_MODEL = MODEL_DIR/'yolov8n.pt'
print(DETECTION_MODEL)
# In case of your custome model comment out the line above and
# Place your custom model pt file name at the line below
# DETECTION_MODEL = MODEL_DIR / 'my_detection_model.pt'
SEGMENTATION_MODEL = MODEL_DIR / 'yolov8n-seg.pt'
print(DETECTION_MODEL)
# Webcam
WEBCAM_PATH = 0
def updateDirectories():
# Videos config
global VIDEOS_DICT,EVALUATION_DICT,FINAL_DICT
VIDEOS_DICT = {}
EVALUATION_DICT = {}
FINAL_DICT = {}
VIDEO_DIR = ROOT / 'videos'
# 'video_1': VIDEO_DIR /'video_1.mp4',
# 'video_2': VIDEO_DIR /'video_2.mp4',
# 'video_3': VIDEO_DIR /'video_3.mp4',
# 'video_4': VIDEO_DIR/'video.mp4',
# }
# for i in VIDEOS_DICT.keys():
# print(i,VIDEOS_DICT[i])
for filename in os.listdir(VIDEO_DIR):
f = os.path.join(VIDEO_DIR, filename)
# checking if it is a file
print(filename)
try:
if(filename[-4:]==".mp4" or filename[-4:] == ".AVI"):
VIDEOS_DICT[filename] = f
else:
pass
except:
pass
EVALUATION_DIR = VIDEO_DIR / 'junctionEvalDataset'
for filename in os.listdir(EVALUATION_DIR):
f = os.path.join(EVALUATION_DIR, filename)
# checking if it is a file
EVALUATION_DICT[filename] = f
for filename in os.listdir(DATASET_DIR_ENCROACHMENT):
f = os.path.join(DATASET_DIR_ENCROACHMENT, filename)
# checking if it is a file
ENCROACHMENT_DICT[filename] = f
for filename in os.listdir(DATASET_DIR_FLOW):
f = os.path.join(DATASET_DIR_FLOW, filename)
# checking if it is a file
FLOW_DICT[filename] = f
for filename in os.listdir(DATASET_DIR_QUEUE):
f = os.path.join(DATASET_DIR_QUEUE, filename)
# checking if it is a file
QUEUE_DICT[filename] = f
for i in EVALUATION_DICT.keys():
newDict = {}
for filename in os.listdir(EVALUATION_DICT[i]):
f = os.path.join(i, filename)
# checking if it is a file
try:
if(filename[-4:].lower()==".mp4"):
newDict[filename] = f
else:
pass
except:
pass
FINAL_DICT[i] = newDict
# EVALUATION_DICT = {
# 'chickPea': EVALUATION_DIR /'chickPea.mp4',
# }
# print (EVALUATION_DICT['chickPea'])
# ML Model config
MODEL_DIR = ROOT /'weights'
#print(MODEL_DIR)
DETECTION_MODEL = MODEL_DIR/'yolov8n.pt'
# In case of your custome model comment out the line above and
# Place your custom model pt file name at the line below
# DETECTION_MODEL = MODEL_DIR / 'my_detection_model.pt'
SEGMENTATION_MODEL = MODEL_DIR / 'yolov8n-seg.pt'