-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathmain.swift
224 lines (192 loc) · 6.79 KB
/
main.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Datasets
import ModelSupport
import TensorFlow
import TextModels
#if os(Windows)
#if canImport(CRT)
import CRT
#else
import MSVCRT
#endif
#endif
internal func runTraining(settings: WordSegSettings) throws {
var trainingLossHistory = [Float]() // Keep track of loss.
var validationLossHistory = [Float]() // Keep track of loss.
var noImprovements = 0 // Consecutive epochs without improvements to loss.
// Load user-provided data files.
let dataset: WordSegDataset
if settings.trainingPath == nil {
dataset = try WordSegDataset()
} else {
dataset = try WordSegDataset(
training: settings.trainingPath!, validation: settings.validationPath,
testing: settings.testPath)
}
let sequences = dataset.trainingPhrases.map { $0.numericalizedText }
let lexicon = Lexicon(
from: sequences,
alphabet: dataset.alphabet,
maxLength: settings.maxLength,
minFrequency: settings.minFrequency
)
let modelParameters = SNLM.Parameters(
hiddenSize: settings.hiddenSize,
dropoutProbability: Double(settings.dropoutProbability),
alphabet: dataset.alphabet,
lexicon: lexicon,
order: settings.order
)
let device: Device
switch settings.backend {
case .eager:
device = Device.defaultTFEager
case .x10:
device = Device.defaultXLA
}
var model = SNLM(parameters: modelParameters)
model.move(to: device)
var optimizer = Adam(for: model, learningRate: settings.learningRate)
optimizer = Adam(copying: optimizer, to: device)
print("Starting training...")
for epoch in 1...settings.maxEpochs {
Context.local.learningPhase = .training
var trainingLossSum: Float = 0
var trainingBatchCount = 0
let trainingBatchCountTotal = dataset.trainingPhrases.count
for phrase in dataset.trainingPhrases {
let sentence = phrase.numericalizedText
let (loss, gradients) = valueWithGradient(at: model) { model -> Tensor<Float> in
let lattice = model.buildLattice(sentence, maxLen: settings.maxLength, device: device)
let score = lattice[sentence.count].semiringScore
let expectedLength = exp(score.logr - score.logp)
let loss = -1 * score.logp + settings.lambd * expectedLength
return Tensor(loss, on: device)
}
let lossScalarized = loss.scalarized()
if trainingBatchCount % 10 == 0 {
let bpc = getBpc(loss: lossScalarized, characterCount: sentence.count)
print(
"""
[Epoch \(epoch)] (\(trainingBatchCount)/\(trainingBatchCountTotal)) | Bits per character: \(bpc)
"""
)
}
trainingLossSum += lossScalarized
trainingBatchCount += 1
optimizer.update(&model, along: gradients)
LazyTensorBarrier()
if hasNaN(gradients) {
print("Warning: grad has NaN")
}
if hasNaN(model) {
print("Warning: model has NaN")
}
}
// Decrease the learning rate if loss is stagnant.
let trainingLoss = trainingLossSum / Float(trainingBatchCount)
trainingLossHistory.append(trainingLoss)
reduceLROnPlateau(lossHistory: trainingLossHistory, optimizer: optimizer)
if dataset.validationPhrases.count < 1 {
print(
"""
[Epoch \(epoch)] \
Training loss: \(trainingLoss)
"""
)
// Stop training when loss stops improving.
if terminateTraining(
lossHistory: trainingLossHistory,
noImprovements: &noImprovements)
{
break
}
continue
}
Context.local.learningPhase = .inference
var validationLossSum: Float = 0
var validationBatchCount = 0
var validationCharacterCount = 0
var validationPlainText: String = ""
for phrase in dataset.validationPhrases {
let sentence = phrase.numericalizedText
var lattice = model.buildLattice(sentence, maxLen: settings.maxLength, device: device)
let score = lattice[sentence.count].semiringScore
validationLossSum -= score.logp
validationBatchCount += 1
validationCharacterCount += sentence.count
// View a sample segmentation once per epoch.
if validationBatchCount == dataset.validationPhrases.count {
let bestPath = lattice.viterbi(sentence: phrase.numericalizedText)
validationPlainText = Lattice.pathToPlainText(path: bestPath, alphabet: dataset.alphabet)
}
}
let bpc = getBpc(loss: validationLossSum, characterCount: validationCharacterCount)
let validationLoss = validationLossSum / Float(validationBatchCount)
print(
"""
[Epoch \(epoch)] Learning rate: \(optimizer.learningRate)
Validation loss: \(validationLoss), Bits per character: \(bpc)
\(validationPlainText)
"""
)
// Stop training when loss stops improving.
validationLossHistory.append(validationLoss)
if terminateTraining(lossHistory: validationLossHistory, noImprovements: &noImprovements) {
break
}
}
}
fileprivate func getBpc(loss: Float, characterCount: Int) -> Float {
return loss / Float(characterCount) / log(2)
}
fileprivate func hasNaN<T: KeyPathIterable>(_ t: T) -> Bool {
for kp in t.recursivelyAllKeyPaths(to: Tensor<Float>.self) {
if t[keyPath: kp].isNaN.any() { return true }
}
return false
}
fileprivate func terminateTraining(
lossHistory: [Float], noImprovements: inout Int, patience: Int = 5
) -> Bool {
if lossHistory.count <= patience { return false }
let window = Array(lossHistory.suffix(patience))
guard let loss = lossHistory.last else { return false }
if window.min() == loss {
if window.max() == loss { return true }
noImprovements = 0
} else {
noImprovements += 1
if noImprovements >= patience { return true }
}
return false
}
fileprivate func reduceLROnPlateau(
lossHistory: [Float], optimizer: Adam<SNLM>,
factor: Float = 0.25
) {
let threshold: Float = 1e-4
let minDecay: Float = 1e-8
if lossHistory.count < 2 { return }
let window = Array(lossHistory.suffix(2))
guard let previous = window.first else { return }
guard let loss = window.last else { return }
if loss <= previous * (1 - threshold) { return }
let newLR = optimizer.learningRate * factor
if optimizer.learningRate - newLR > minDecay {
optimizer.learningRate = newLR
}
}
WordSegCommand.main()