-
Notifications
You must be signed in to change notification settings - Fork 80
/
vqe2d.py
64 lines (50 loc) · 1.57 KB
/
vqe2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
VQE on 2D square lattice Heisenberg model with size n*m
"""
import tensorflow as tf
import tensorcircuit as tc
# import cotengra as ctg
# optr = ctg.ReusableHyperOptimizer(
# methods=["greedy", "kahypar"],
# parallel=True,
# minimize="flops",
# max_time=120,
# max_repeats=4096,
# progbar=True,
# )
# tc.set_contractor("custom", optimizer=optr, preprocessing=True)
tc.set_dtype("complex64")
tc.set_backend("tensorflow")
n, m, nlayers = 3, 2, 2
coord = tc.templates.graphs.Grid2DCoord(n, m)
def singlet_init(circuit): # assert n % 2 == 0
nq = circuit._nqubits
for i in range(0, nq - 1, 2):
j = (i + 1) % nq
circuit.X(i)
circuit.H(i)
circuit.cnot(i, j)
circuit.X(j)
return circuit
def vqe_forward(param):
paramc = tc.backend.cast(param, dtype="complex64")
c = tc.Circuit(n * m)
c = singlet_init(c)
for i in range(nlayers):
c = tc.templates.blocks.Grid2D_entangling(
c, coord, tc.gates._swap_matrix, paramc[i]
)
loss = tc.templates.measurements.heisenberg_measurements(c, coord.lattice_graph())
return loss
vgf = tc.backend.jit(
tc.backend.value_and_grad(vqe_forward),
)
param = tc.backend.implicit_randn(stddev=0.1, shape=[nlayers, 2 * n * m])
if __name__ == "__main__":
lr = tf.keras.optimizers.schedules.ExponentialDecay(0.01, 100, 0.9)
opt = tc.backend.optimizer(tf.keras.optimizers.Adam(lr))
for j in range(1000):
loss, gr = vgf(param)
param = opt.update(gr, param)
if j % 50 == 0:
print("loss", loss.numpy())