-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRequiredLibraries.R
72 lines (52 loc) · 1.75 KB
/
RequiredLibraries.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
rm(list = ls())
#load my libraries
libs<-c("Packages.R")
libs<-paste("https://gist.githubusercontent.com/datad/39b9401a53e7f4b44e9bea4d584ac3e8/raw/", libs,sep='')
sapply(libs, function(u) {source(u)})
#' Loading my util functions
#'
#' @return
#' @export
#'
#' @examples
loadMyLib <- function(){
#load my libraries
libs<-c("Packages.R")
libs<-paste("https://gist.githubusercontent.com/datad/39b9401a53e7f4b44e9bea4d584ac3e8/raw/", libs,sep='')
sapply(libs, function(u) {source(u)})
#rm(list=ls()[-which(ls() %in% c("patients", "mutation", "clinicalLong"))])
rm(list=ls()[which(ls() %in% c("libs"))])
#save.image("data/loadls.RData")
}
loadlib("reporttools")
loadlib("gridExtra",FALSE) #to save tables as pdfs with function grid.table
loadlib("gsubfn",F) #to return multiple variables with list[,] need 0.7-0 or later
# myfun <- function() list(a = 1, b = 2)
# list[a, b] <- myfun()
# test ----
loadls("plyr survival classInt", T)
# NMF ----
loadls("plyr survival lmtest", F)
loadls("stats registry", F)
loadls("methods utils pkgmaker registry rngtools cluster", F)
loadlib("NMF", F) #For non-negative matrix factorization
install.extras('NMF')
#The paper: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-367
#The vignette: https://cran.r-project.org/web/packages/NMF/index.html
#plot survival analysis
loadls("plyr missForest survAUC prodlim survminer", F)
require(purrr)
require(cluster)
require(survival)
#k-means
loadls("fpc NbClust", F)
require("fpc")
require("NbClust")
load("data/mutationSmoothPositive.RData", envir = globalenv())
#RTCGA mutation
loadls("RTCGA.mutations dplyr reshape2",F)
#RTCGA clinical and survival
loadls("RTCGA.clinical dplyr reshape2",F)
require(RTCGA.clinical)
require(RTCGA.clinical)
require(dplyr)