-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathbox.py
58 lines (55 loc) · 1.85 KB
/
box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""Raspberry Pi Face Recognition Treasure Box
Treasure Box Script
Copyright 2013 Tony DiCola
"""
import cv2
import config
import face
import hardware
if __name__ == '__main__':
# Load training data into model
print 'Loading training data...'
model = cv2.createEigenFaceRecognizer()
model.load(config.TRAINING_FILE)
print 'Training data loaded!'
# Initialize camer and box.
camera = config.get_camera()
box = hardware.Box()
# Move box to locked position.
box.lock()
print 'Running box...'
print 'Press button to lock (if unlocked), or unlock if the correct face is detected.'
print 'Press Ctrl-C to quit.'
while True:
# Check if capture should be made.
# TODO: Check if button is pressed.
if box.is_button_up():
if not box.is_locked:
# Lock the box if it is unlocked
box.lock()
print 'Box is now locked.'
else:
print 'Button pressed, looking for face...'
# Check for the positive face and unlock if found.
image = camera.read()
# Convert image to grayscale.
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Get coordinates of single face in captured image.
result = face.detect_single(image)
if result is None:
print 'Could not detect single face! Check the image in capture.pgm' \
' to see what was captured and try again with only one face visible.'
continue
x, y, w, h = result
# Crop and resize image to face.
crop = face.resize(face.crop(image, x, y, w, h))
# Test face against model.
label, confidence = model.predict(crop)
print 'Predicted {0} face with confidence {1} (lower is more confident).'.format(
'POSITIVE' if label == config.POSITIVE_LABEL else 'NEGATIVE',
confidence)
if label == config.POSITIVE_LABEL and confidence < config.POSITIVE_THRESHOLD:
print 'Recognized face!'
box.unlock()
else:
print 'Did not recognize face!'