-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTesting.py
61 lines (47 loc) · 1.68 KB
/
Testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from torchvision import transforms as T
from PIL import Image
import os
import numpy as np
import cv2
import timeit
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# datasets = SIP , DUT-RGBD , NLPR , NJU2K
model_path = os.path.join('DDNet_100.pt')
model = torch.load(model_path)
model.eval().to(device)
def preprocess_image(img):
transform = T.Compose([T.Resize((256, 256)), T.ToTensor()])
x = transform(img)
x = torch.unsqueeze(x, 0)
x = x.to(device)
return x
def predictions(img, h , w):
x = preprocess_image(img)
start_time = timeit.default_timer()
output = model(x)
print (h, w)
# output = output[0]
output = torch.nn.functional.upsample(output, size=(h, w), mode='bilinear', align_corners=True)
output = torch.squeeze(output, 0).sigmoid()
output = output.detach().cpu().numpy()
output = output.dot(255)
output *= output.max()/255.0
return output
def testing_code_dir(input_dir, output_dir):
val_base_path_images = os.listdir(input_dir)
for single_image in val_base_path_images:
full_path = input_dir + single_image
img = Image.open(full_path).convert("RGB")
w, h = img.size
output = predictions(img, h , w)
output = np.transpose(output, (1, 2, 0))
# cv2.imshow('', output)
# cv2.waitKey(50)
output_path = output_dir + single_image[0:(len(single_image) - 3)] + "png"
cv2.imwrite(output_path, output)
print("Reading: %s\n writing: %s " % (full_path, output_path))
# # testing code SIP
input_dir = r'/home/hussaint/SODDatasets/NLPR/Test/Images/'
output_dir = r'Output/'
testing_code_dir(input_dir,output_dir)