-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
70 lines (68 loc) · 2.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from torch import optim
from itertools import chain
import timm.optim.optim_factory as optim_factory
def get_optimizer(args, model):
if args["pretrained_lm"]:
optimizer = optim.AdamW(
[
{
"params": list(
chain(
*[
list(
(
filter(
lambda p: p.requires_grad,
module.parameters(),
)
)
)
for module in model.children()
if (
("transformers" in str(type(module)).lower())
or ("dataparallel" in str(type(module)).lower())
)
]
)
),
"lr": args["learning_rate"],
"weight_decay": 0.0,
},
{
"params": list(
chain(
*[
list(
(
filter(
lambda p: p.requires_grad,
module.parameters(),
)
)
)
for module in model.children()
if (
("transformers" not in str(type(module)).lower())
and (
"dataparallel" not in str(type(module)).lower()
)
)
]
)
),
"weight_decay": args["weight_decay"],
},
],
lr=args["learning_rate"],
eps=1e-6,
)
# optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=args["learning_rate"], weight_decay=args["weight_decay"], eps=1e-6)
else:
for name, param in model.named_parameters():
print(f"{name}: {param.requires_grad}")
optimizer = optim.AdamW(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args["learning_rate"],
weight_decay=args["weight_decay"],
)
return optimizer