-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessingText.m
71 lines (64 loc) · 2.82 KB
/
preprocessingText.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
function [tokenDoc] = preprocessingText(textString, options)
% PRECPROCESSINGTEXT Produces tokenized text from individual raw texts.
% [tokenDoc] = preprocessingText(textString, options)
%
% Tokenization reduces the text to a form that is more suitable for
% subsequent algorithmic analysis by simplyifing words, merging words that
% have the same lexicalic origin and deleting certain
% text elements such as infrequent or short words.
%
% ====INPUT=====
% textString string Raw text of a single document.
%
% -options-
% nLetterShort integer Only words longer than this are kept
% StopWords string array User-defined words to be removed
% from tokenized text.
% nounOnly logical reduces tokenized text to nouns only;
% Increases speed, but makes nGrams less
% accurate or sensible.
% removeNonWord logical remove digits and web addresses from text
% ====OUTPUT====
% tokenDoc tokenizedDoc Processed text of the pdf document
arguments
textString string {mustBeText}
options.nLetterShort (1,1) double {mustBeInteger} = 2
options.StopWords (1,:) string {mustBeText} = strings
options.NounOnly (1,1) logical {mustBeNumericOrLogical} = false
options.removeNonWord logical {mustBeNumericOrLogical} = true
end
% Tokenize document
tokenDoc = tokenizedDocument(textString);
% Add information about functions of individual words, e.g. 'noun',
% 'adjective' etc.
tokenDoc = addPartOfSpeechDetails(tokenDoc);
% Remove standard stop words
tokenDoc = removeStopWords(tokenDoc);
% Punctuation is unimportant for alter analysis
tokenDoc = erasePunctuation(tokenDoc);
% Extract table with part of speech details; allows to remove words of
% specified type subsequently.
tkD = tokenDetails(tokenDoc);
% Remove non-word strings from text, such as numbers and web adresses
if options.removeNonWord
numTokens = tkD.Type == "digits" ;
webTokens = tkD.Type == "web-adress";
tokenDoc = removeWords(tokenDoc, tkD.Token(numTokens, :) );
tokenDoc = removeWords(tokenDoc, tkD.Token(webTokens, :) );
clear numTokens webTokens
end
% Reduce text to nouns only, enables faster topic modelling later
if options.NounOnly
nounTokens = contains(string(tkD.PartOfSpeech), "noun");
tokenDoc = removeWords(tokenDoc, tkD.Token(~nounTokens, :));
clear nounTokens
end
clear tkD
% Removal of short words that are often not important for topics
tokenDoc = removeShortWords(tokenDoc, options.nLetterShort);
% Remove user specified stopwords
tokenDoc = removeWords(tokenDoc, options.StopWords, 'IgnoreCase', true);
% Reduce words to their word stem, reducing the possible forms of words
% i.e., 'build', 'built', 'building' would all become 'build'
tokenDoc = normalizeWords(tokenDoc,Style="lemma");
end