forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathz_xgboost_aki_tesing_w2.py
228 lines (178 loc) · 7.08 KB
/
z_xgboost_aki_tesing_w2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.3.4
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# +
from sklearn.datasets import load_boston
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import os
from sklearn.metrics import roc_auc_score, roc_curve
from matplotlib import pyplot
from sklearn.metrics import auc
import seaborn as sns
from sklearn import metrics
import datetime
from sklearn.model_selection import GridSearchCV
from bayes_opt import BayesianOptimization
import warnings
print("xgb.__version__ : ",xgb.__version__)
data_dir= '/home/lpatel/projects/AKI/data_592v'
#data_dir= '~/projects/AKI/test'
#data_dir='/home/lpatel/projects/AKI/data'
train_csv = os.path.join(data_dir,'train_csv.csv')
test_csv = os.path.join(data_dir,'test_csv.csv')
weight_csv = os.path.join(data_dir,'weight_csv.csv')
train = pd.read_csv(train_csv)
test = pd.read_csv(test_csv)
weight = pd.read_csv(weight_csv)
#column names are formted inconsitantly
weight['col_fmt'] = weight.col.str.replace('-','.').str.replace(':','.')
cols = train.columns.tolist()
X_col = cols[1:-1]
y_col = cols[-1]
X_train,y_train = train[X_col],train[y_col]
X_test, y_test = test[X_col] ,test[y_col]
print(set(X_col) -set(weight.col_fmt.tolist()) )
print(set(weight.col_fmt.tolist()) - set(X_col) )
weight1_lst = weight.set_index(keys=['col_fmt']).reindex(X_train.columns.tolist()).weight1.tolist()
weight2_lst = weight.set_index(keys=['col_fmt']).reindex(X_train.columns.tolist()).weight2.tolist()
weight3_lst = weight.set_index(keys=['col_fmt']).reindex(X_train.columns.tolist()).weight3.tolist()
weight4_lst = weight.set_index(keys=['col_fmt']).reindex(X_train.columns.tolist()).weight4.tolist()
weight5_lst = weight.set_index(keys=['col_fmt']).reindex(X_train.columns.tolist()).weight5.tolist()
# params = {'booster': 'gbtree', 'max_depth': 9, 'min_child_weight': 8, 'eta': 0.29525487641290965, 'objective': 'binary:logistic', 'n_jobs': 20, 'silent': True, 'eval_metric': 'logloss', 'subsample': 0.7736592270406913, 'colsample_bytree': 0.648401179944065, 'seed': 1001}
model = xgb.XGBClassifier(
booster= 'gbtree', max_depth= 9, min_child_weight= 8, eta= 0.29525487641290965, objective= 'binary:logistic', n_jobs= 20, silent= True, eval_metric= 'logloss', subsample= 0.7736592270406913, colsample_bytree= 0.648401179944065, seed= 1001
)
model.fit(X_train, y_train)
print(model.get_xgb_params)
df= pd.DataFrame({'cols':X_train.columns,'feature_importances' :model.feature_importances_ }).sort_values(by='feature_importances',ascending=False)
t = datetime.datetime.now().strftime('%Y-%m-%d--%H-%M-%S')
df.to_csv("/home/lpatel/aki/results/feature_importance_tesing.csv"+t+'_w2',index=False)
exit(0)
# +
# def algorithm_pipeline(X_train_data, X_test_data, y_train_data, y_test_data,
# model, param_grid, cv=10, scoring_fit = 'roc_auc',
# do_probabilities = True):
# gs = GridSearchCV(
# estimator=model,
# param_grid=param_grid,
# cv=cv,
# n_jobs=4,
# scoring=scoring_fit,
# verbose=2
# )
# fitted_model = gs.fit(X_train_data, y_train_data)
# if do_probabilities:
# pred = fitted_model.predict_proba(X_test_data)
# else:
# pred = fitted_model.predict(X_test_data)
# return fitted_model, pred
# model = xgb.XGBClassifier(
# objective='binary:logistic',
# n_jobs = 6
# )
# param_grid = {
# 'max_depth': [3, 6, 9],
# 'n_estimators': [500, 1000, 1500],
# 'colsample_bytree': [0.05,0.5,0.75],
# 'subsample': [0.5, 0.75, 0.9],
# 'objective': ['binary:logistic'],
# }
# # ddddddddddddddddddd
# model, pred = algorithm_pipeline(X_train, X_test, y_train, y_test, model,
# param_grid, cv=5)
# data = pd.DataFrame(model.cv_results_)
# # pd.options.display.max_columns = None
# # pd.options.display.max_rows = None
# print(data)
# t = datetime.datetime.now().strftime('%Y-%m-%d--%H-%M-%S')
# data.to_csv("~/results_parm_cv.csv_weight1_lst" + t)
# print ("done")
#geting feature importance for the best round
# +
AUC_LIST = []
LOG_LOSS_LIST = []
ITERbest_LIST = []
PARAM_LIST = []
dtrain = xgb.DMatrix(X_train, label = y_train)
def XGB_CV(max_depth,
# n_estimators,
colsample_bytree, subsample, min_child_weight,eta):
global AUC_LIST
global LOG_LOSS_LIST
global ITERbest_LIST
global PARAM_LIST
#print(n_estimators)
paramt = {
'booster' : 'gbtree',
'max_depth' : int(max_depth),
'min_child_weight' : int(min_child_weight),
# 'n_estimators': int(n_estimators),
'eta' : float(eta),
'objective' : 'binary:logistic',
'n_jobs' : 20,
'silent' : True,
'eval_metric': 'logloss',
'subsample' : max(min(subsample, 1), 0),
'colsample_bytree' : max(min(colsample_bytree, 1), 0),
'seed' : 1001
}
PARAM_LIST.append(paramt)
folds = 5
cv_score = 0
print("\n Search parameters (%d-fold validation):\n %s" % (folds, paramt), file=log_file )
log_file.flush()
xgbc = xgb.cv(
paramt,
dtrain,
#num_boost_round = int(n_estimators),
stratified = True,
nfold = folds,
early_stopping_rounds = 100,
metrics = ['auc', 'logloss'],
show_stdv = True
)
auc_score = xgbc['test-auc-mean'].iloc[-1]
logloss_score = xgbc['test-logloss-mean'].iloc[-1]
iterbest = len(xgbc)
AUC_LIST.append(auc_score)
LOG_LOSS_LIST.append(logloss_score)
ITERbest_LIST.append(iterbest)
return (auc_score*2) - 1
XGB_BO = BayesianOptimization(XGB_CV, {
'max_depth': (4, 10),
# 'n_estimators': (1, 10),
'colsample_bytree': (0.5, 0.9),
'subsample': (0.5, 0.8),
'min_child_weight':(1,10),
'eta':(0.05,0.3)
})
# +
t = datetime.datetime.now().strftime('%Y-%m-%d--%H-%M-%S')
log_file = open('/home/lpatel/aki/results/test.log'+t, 'a')
log_file.flush()
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
XGB_BO.maximize(init_points=10, n_iter=100)
# +
df = pd.DataFrame({"auc": AUC_LIST, "log": LOG_LOSS_LIST, "round": ITERbest_LIST, "param": PARAM_LIST })
df['param'] = df['param'].astype(str)
t = datetime.datetime.now().strftime('%Y-%m-%d--%H-%M-%S')
df.to_csv("/home/lpatel/aki/results/cv_result_baysian.csv"+t+"_w2", sep="|")
# -
print (len(ITERbest_LIST),len(PARAM_LIST),len(LOG_LOSS_LIST),len(AUC_LIST))
print(weight2_lst)