-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmistral_bookqa_gradio.py
528 lines (483 loc) · 20 KB
/
mistral_bookqa_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
from gradio_client import Client
client = Client("https://svjack-entity-property-extractor-zh.hf.space")
import pandas as pd
import numpy as np
import os
import re
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain import chains
from rapidfuzz import fuzz
from huggingface_hub import snapshot_download
if not os.path.exists("genshin_book_chunks_with_qa_sp"):
path = snapshot_download(
repo_id="svjack/genshin_book_chunks_with_qa_sp",
repo_type="dataset",
local_dir="genshin_book_chunks_with_qa_sp",
local_dir_use_symlinks = False
)
if not os.path.exists("bge_small_book_chunks_prebuld"):
path = snapshot_download(
repo_id="svjack/bge_small_book_chunks_prebuld",
repo_type="dataset",
local_dir="bge_small_book_chunks_prebuld",
local_dir_use_symlinks = False
)
if not os.path.exists("mistral-7b"):
path = snapshot_download(
repo_id="svjack/mistral-7b",
repo_type="model",
local_dir="mistral-7b",
local_dir_use_symlinks = False
)
kw_list = ["归终"]
def kw_entity_rec(x, kw_list = kw_list):
return list(filter(lambda y: y in x, kw_list))
'''
query = "警察是如何破获邪恶计划的?" ## 警 执律 盗
k = 10
uniform_recall_docs_to_pairwise_cos(
query,
docsearch_bge_loaded.similarity_search_with_score(query, k = k, ),
bge_book_embeddings
)
'''
def uniform_recall_docs_to_pairwise_cos(query ,doc_list, embeddings):
assert type(doc_list) == type([])
from langchain.evaluation import load_evaluator
from langchain.evaluation import EmbeddingDistance
hf_evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embeddings,
distance_metric = EmbeddingDistance.COSINE)
return sorted(pd.Series(doc_list).map(lambda x: x[0].page_content).map(lambda x:
(x ,hf_evaluator.evaluate_string_pairs(prediction=query, prediction_b=x)["score"])
).values.tolist(), key = lambda t2: t2[1])
'''
sort_by_kw("深渊使徒", book_df)["content_chunks_formatted"].head(5).values.tolist() ### 深渊
'''
def sort_by_kw(kw, book_df):
req = book_df.copy()
req["sim_score"] = req.apply(
lambda x:
max(map(lambda y: fuzz.ratio(y, kw) ,eval(x["person"]) + eval(x["locate"]) + eval(x["locate"]))) if \
eval(x["person"]) + eval(x["locate"]) + eval(x["locate"]) else 0
, axis = 1
)
req = req.sort_values(by = "sim_score", ascending = False)
return req
def recall_chuncks(query, docsearch, embedding, book_df,
sparse_threshold = 30,
dense_top_k = 10,
rerank_by = "emb",
):
sparse_output = sort_by_kw(query, book_df)[["content_chunks_formatted", "sim_score"]]
sparse_output_list = sparse_output[
sparse_output["sim_score"] >= sparse_threshold
]["content_chunks_formatted"].values.tolist()
dense_output = uniform_recall_docs_to_pairwise_cos(
query,
docsearch.similarity_search_with_score(query, k = dense_top_k,),
embedding
)
for chunck, score in dense_output:
if chunck not in sparse_output_list:
sparse_output_list.append(chunck)
if rerank_by == "emb":
from langchain.evaluation import load_evaluator
from langchain.evaluation import EmbeddingDistance
hf_evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embedding,
distance_metric = EmbeddingDistance.COSINE)
return pd.Series(sorted(pd.Series(sparse_output_list).map(lambda x:
(x ,hf_evaluator.evaluate_string_pairs(prediction=query, prediction_b=x)["score"])
).values.tolist(), key = lambda t2: t2[1])).map(lambda x: x[0]).values.tolist()
else:
sparse_output_list = sorted(sparse_output_list, key = lambda x: fuzz.ratio(x, query), reverse = True)
return sparse_output_list
def reduce_list_by_order(text_list, as_text = False):
if not text_list:
return
df = pd.DataFrame(
list(map(lambda x: (x.split("\n")[0], x.split("\n")[1], "\n".join(x.split("\n")[2:])), text_list))
).groupby([0, 1])[2].apply(list).map(lambda x: sorted(x, key = len, reverse=True)).map(
"\n\n".join
).reset_index()
d = dict(df.apply(lambda x: ((x.iloc[0], x.iloc[1]), x.iloc[2]), axis = 1).values.tolist())
#return df
order_list = []
for x in text_list:
a, b = x.split("\n")[0], x.split("\n")[1]
if not order_list:
order_list = [[a, [b]]]
elif a in list(map(lambda t2: t2[0], order_list)):
order_list[list(map(lambda t2: t2[0], order_list)).index(a)][1].append(b)
elif a not in list(map(lambda t2: t2[0], order_list)):
order_list.append([a, [b]])
df = pd.DataFrame(pd.DataFrame(order_list).explode(1).dropna().apply(
lambda x: (x.iloc[0], x.iloc[1], d[(x.iloc[0], x.iloc[1])]), axis = 1
).values.tolist()).drop_duplicates()
if as_text:
return "\n\n".join(
df.apply(lambda x: "{}\n{}\n{}".format(x.iloc[0], x.iloc[1], x.iloc[2]), axis = 1).values.tolist()
)
return df
def build_gpt_prompt(query, docsearch, embedding, book_df, max_context_length = 4090):
l = recall_chuncks(query, docsearch, embedding, book_df)
context = reduce_list_by_order(l, as_text = True)
context_l = []
for ele in context.split("\n"):
if sum(map(len, context_l)) >= max_context_length:
break
context_l.append(ele)
context = "\n".join(context_l).strip()
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""
return template.format(
**{
"context": context,
"question": query
}
)
def collect_prompt_to_hist_list(prompt, add_assistant = False):
l = pd.Series(prompt.split("\n\n")).map(lambda x: x.strip()).values.tolist()
ll = []
for ele in l:
if not ll:
ll.append(ele)
else:
if ele.startswith("文章标题:") or ele.startswith("问题:"):
ll.append(ele)
else:
ll[-1] += ("\n\n" + ele)
if add_assistant:
ll_ = []
for i in range(len(ll)):
if i == 0:
ll_.append((ll[i], "好的。"))
elif i < len(ll) - 1:
ll_.append((ll[i], "我读懂了。"))
else:
ll_.append((ll[i], ""))
return ll_
else:
return ll
def row_to_content_ask(r):
question = r["question"]
content_list = r["content_list"]
assert type(content_list) == type([])
content_prompt_list = pd.Series(content_list).map(
lambda x: '''
{}\n从上面的相关的叙述中抽取包含"{}"中词汇的相关语段。
'''.format(x, question).strip()
).values.tolist()
return content_prompt_list
def entity_extractor_by_llm(query, llm, show_process = False, max_length = 512):
import re
hist = [['请从下面的句子中提取实体和属性。不需要进行进一步解释。', '好的。'],
['宁波在哪个省份?', '实体:宁波 属性:省份'],
['中国的货币是什么?', '实体:中国 属性:货币'],
['百慕大三角在什么地方?', '实体:百慕大三角 属性:地方'],
['谁是最可爱的人?', "实体:人 属性:可爱"],
['黄河的拐点在哪里?', "实体:黄河 属性:拐点"],
#["玉米的引进时间是什么时候?", ""]
]
re_hist = pd.DataFrame(
pd.Series(hist).map(
lambda t2: (
{
"role": "user",
"content": t2[0]
},
{
"role": "assistant",
"content": t2[1]
},
)
).values.tolist()).values.reshape([-1]).tolist()
out = llm.create_chat_completion(
messages = re_hist + [
{
"role": "user",
#"content": prompt + "如果没有提到相关内容,请回答不知道。使用中文进行回答,不要包含任何英文。"
"content": query
}
],
stream=True
)
out_text = ""
for chunk in out:
delta = chunk['choices'][0]['delta']
if "content" in delta:
out_text += delta['content']
#from IPython.display import clear_output
#clear_output(wait=True)
if show_process:
print(out_text)
if len(out_text) >= max_length:
break
e_list = re.findall(r"实体(.*?)属性", out_text.replace("\n", " "))
if e_list:
return re.findall(u"[\u4e00-\u9fa5]+" ,e_list[0])
return None
def unzip_string(x, size = 2):
if len(x) <= size:
return [x]
req = []
for i in range(len(x) - size + 1):
req.append(x[i: i + size])
return req
def entity_extractor_by_adapter(x):
import json
result = client.predict(
x, # str in 'question' Textbox component
api_name="/predict"
)
with open(result, "r") as f:
req = json.load(f)
req_list = req.get("E-TAG", [])
req_ = []
for ele in req_list:
for x in unzip_string(ele, 2):
if x not in req_:
req_.append(x)
return req_
def query_content_ask_func(question, content_list,
llm, setfit_model, show_process = False, max_length = 1024):
ask_list = row_to_content_ask(
{
"question": question,
"content_list": content_list
}
)
#return ask_list
req = []
for prompt in ask_list:
out = llm.create_chat_completion(
messages = [
{
"role": "user",
"content": prompt + "如果没有提到相关内容,请回答不知道。使用中文进行回答,不要包含任何英文。"
}
],
stream=True
)
out_text = ""
for chunk in out:
delta = chunk['choices'][0]['delta']
if "content" in delta:
out_text += delta['content']
#from IPython.display import clear_output
#clear_output(wait=True)
if show_process:
print(out_text)
if len(out_text) >= max_length:
break
req.append(out_text)
d = {
"question": question,
"content_list": content_list
}
assert len(req) == len(ask_list)
d["question_content_relate_list"] = req
d["relate_prob_list"] = setfit_model.predict_proba(
req
).numpy()[:, 1].tolist()
return d
def build_relate_ask_list(query, docsearch_bge_loaded, bge_book_embeddings, book_df,
llm, setfit_model, as_content_score_df = True,
show_process = False, add_relate_entities = False,
max_length = 1024):
prompt = build_gpt_prompt(query, docsearch_bge_loaded, bge_book_embeddings, book_df)
prompt_list = collect_prompt_to_hist_list(prompt)
question = prompt_list[-1].split("\n")[0]
content_list = prompt_list[1:-1]
d = query_content_ask_func(question, content_list,
llm, setfit_model, show_process = show_process)
#entity_list = entity_extractor_by_llm(query, llm, show_process = show_process, max_length = max_length)
entity_list = entity_extractor_by_adapter(query)
if type(entity_list) != type([]):
entity_list = []
for ele in kw_entity_rec(query):
if ele not in entity_list:
entity_list.append(ele)
d["in_content_entity_list"] = list(map(lambda x:
list(filter(lambda e: e in x, entity_list))
, d["content_list"]))
if add_relate_entities:
relate_content_entity_list = [[]] * len(content_list)
for entity in entity_list:
entity_content_score_d = query_content_ask_func(entity, d["content_list"],
llm, setfit_model, show_process = show_process)
lookup_df = pd.DataFrame(
list(zip(*[entity_content_score_d["content_list"],
entity_content_score_d["relate_prob_list"]]))
)
for ii, (i, r) in enumerate(lookup_df.iterrows()):
if r.iloc[1] >= 0.5 and entity not in relate_content_entity_list[ii]:
#relate_content_entity_list[ii].append(entity)
relate_content_entity_list[ii] = relate_content_entity_list[ii] + [entity]
d["relate_content_entity_list"] = relate_content_entity_list
if as_content_score_df:
if add_relate_entities:
df = pd.concat(
[
pd.Series(d["content_list"]).map(lambda x: x.strip()),
pd.Series(d["in_content_entity_list"]),
pd.Series(d["relate_content_entity_list"]),
pd.Series(d["question_content_relate_list"]).map(lambda x: x.strip()),
pd.Series(d["relate_prob_list"])
], axis = 1
)
df.columns = ["content", "entities", "relate_entities", "relate_eval_str", "score"]
else:
df = pd.concat(
[
pd.Series(d["content_list"]).map(lambda x: x.strip()),
pd.Series(d["in_content_entity_list"]),
#pd.Series(d["relate_content_entity_list"]),
pd.Series(d["question_content_relate_list"]).map(lambda x: x.strip()),
pd.Series(d["relate_prob_list"])
], axis = 1
)
df.columns = ["content", "entities", "relate_eval_str", "score"]
req = []
entities_num_list = df["entities"].map(len).drop_duplicates().dropna().sort_values(ascending = False).\
values.tolist()
for e_num in entities_num_list:
req.append(
df[
df["entities"].map(lambda x: len(x) == e_num)
].sort_values(by = "score", ascending = False)
)
return pd.concat(req, axis = 0)
#df = df.sort_values(by = "score", ascending = False)
#return df
return d
def mistral_predict(prompt, llm, show_process = True, max_length = 512):
out = llm.create_chat_completion(
messages = [] + [
{
"role": "user",
#"content": prompt + "如果没有提到相关内容,请回答不知道。使用中文进行回答,不要包含任何英文。"
"content": prompt
}
],
stream=True
)
#from IPython.display import clear_output
out_text = ""
for chunk in out:
delta = chunk['choices'][0]['delta']
if "content" in delta:
out_text += delta['content']
if show_process:
print(out_text)
if len(out_text) >= max_length:
break
#clear_output(wait=True)
#clear_output(wait=True)
return out_text
def run_all(query, docsearch_bge_loaded, bge_book_embeddings, book_df,
llm, setfit_model, only_return_prompt = False):
df = build_relate_ask_list(query, docsearch_bge_loaded, bge_book_embeddings, book_df,
llm, setfit_model, show_process=False)
info_list = df[
df.apply(
lambda x: x["score"] >= 0.5 and bool(x["entities"]), axis = 1
)
].values.tolist()
if not info_list:
return df, info_list, "没有相关内容,谢谢你的提问。"
prompt = '''
问题: {}
根据下面的内容回答上面的问题,如果无法根据内容确定答案,请回答不知道。
{}
'''.format(query, "\n\n".join(pd.Series(info_list).map(lambda x: x[0]).values.tolist()))
if only_return_prompt:
return df, info_list, prompt
out = mistral_predict(prompt + "\n使用中文进行回答,不要包含任何英文。", llm)
return df, info_list, out
#book_df = pd.read_csv("genshin_book_chunks_with_qa_sp.csv")
book_df = pd.read_csv("genshin_book_chunks_with_qa_sp/genshin_book_chunks_with_qa_sp.csv")
book_df["content_chunks"].dropna().drop_duplicates().shape
book_df["content_chunks_formatted"] = book_df.apply(
lambda x: "文章标题:{}\n子标题:{}\n内容:{}".format(x["title"], x["sub_title"], x["content_chunks"]),
axis = 1
)
texts = book_df["content_chunks_formatted"].dropna().drop_duplicates().values.tolist()
#embedding_path = "bge-small-book-qa/"
embedding_path = "svjack/bge-small-book-qa"
bge_book_embeddings = HuggingFaceEmbeddings(model_name=embedding_path)
docsearch_bge_loaded = FAISS.load_local("bge_small_book_chunks_prebuld/", bge_book_embeddings,
allow_dangerous_deserialization = True
)
from llama_cpp import Llama
#true_path = "mistral-7b-instruct-v0.2.Q4_0.gguf"
true_path = "mistral-7b/mistral-7b-instruct-v0.2.Q4_0.gguf"
#### 16g +
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path=true_path, # Download the model file first
n_ctx=8000, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=-1, # The number of layers to offload to GPU, if you have GPU acceleration available
chat_format="llama-2"
)
from setfit import SetFitModel
#setfit_model = SetFitModel.from_pretrained("setfit_info_cls")
setfit_model = SetFitModel.from_pretrained("svjack/setfit_info_cls")
import gradio as gr
with gr.Blocks() as demo:
title = gr.HTML(
"""<h1 align="center"> <font size="+3"> Genshin Impact Book QA Mistral-7B Demo ⚡ </font> </h1>""",
elem_id="title",
)
with gr.Column():
with gr.Row():
query = gr.Text(label = "输入问题:", lines = 1, interactive = True, scale = 5.0)
run_button = gr.Button("得到答案")
output = gr.Text(label = "回答:", lines = 5, interactive = True)
recall_items = gr.JSON(label = "召回相关内容", interactive = False)
with gr.Row():
gr.Examples(
[
'丘丘人有哪些生活习惯?',
'盐之魔神的下场是什么样的?',
'岩王帝君是一个什么样的人?',
'铳枪手的故事内容是什么样的?',
'大蛇居住在哪里?',
'珊瑚宫有哪些传说?',
'灵光颂的内容是什么样的?',
'枫丹有哪些故事?',
'璃月有哪些故事?',
'轻策庄有哪些故事?',
'瑶光滩有哪些故事?',
'稻妻有哪些故事?',
'海祇岛有哪些故事?',
'蒙德有哪些故事?',
'璃月有哪些奇珍异宝?',
'狸猫和天狗是什么关系?',
'岩王帝君和归终是什么关系?',
],
inputs = query,
label = "被书目内容包含的问题"
)
with gr.Row():
gr.Examples(
[
'爱丽丝女士是可莉的妈妈吗?',
'摘星崖是什么样的?',
'丘丘人使用的是什么文字?',
'深渊使徒哪里来的?',
'发条机关可以用来做什么?',
'那先朱那做了什么?',
],
inputs = query,
label = "没有被书目明确提到的问题"
)
run_button.click(lambda x:
run_all(x, docsearch_bge_loaded, bge_book_embeddings, book_df, llm,
setfit_model = setfit_model)[1:],
query, [recall_items, output]
)
demo.queue(max_size=4, concurrency_count=1).launch(debug=True, show_api=False, share = True)