-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
682 lines (535 loc) · 28.6 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchnet as tnt
import torchvision.transforms as transforms
from tqdm import tqdm
import numpy as np
from utils import AveragePrecisionMeter, Warp
from tensorboardX import SummaryWriter
import torchvision.utils as vutils
import torch.nn.functional as F
class Engine(object):
def __init__(self, state={}):
self.state = state
# Use gpu if any gpu available
if self._state('use_gpu') is None:
self.state['use_gpu'] = torch.cuda.is_available()
# Default image size (192x256) if image size is not set
if self._state('train_image_size') is None:
self.state['train_image_size'] = (192, 256)
if self._state('val_image_size') is None:
self.state['val_image_size'] = (192, 256)
# Default Batch Size
if self._state('batch_size') is None:
self.state['batch_size'] = 1
# Default train and test workers
if self._state('train_workers') is None:
self.state['train_workers'] = 16
if self._state('val_workers') is None:
self.state['val_workers'] = 4
# Using multiple gpus or not
if self._state('multi_gpu') is None:
self.state['multi_gpu'] = True
# Set device ids to be used for training or testing
if self._state('device_ids') is None:
if self.state['evaluate']:
print("Evaluating on single GPU")
self.state['device_ids'] = [0]
else:
self.state['device_ids'] = [0]
# Training or Evaluation
if self._state('evaluate') is None:
self.state['evaluate'] = False
# Starting epoch number
if self._state('start_epoch') is None:
self.state['start_epoch'] = 0
# Maximum epoch number for training of model
if self._state('max_epochs') is None:
self.state['max_epochs'] = 100
# Current epoch number during training
if self._state('epoch_step') is None:
self.state['epoch_step'] = []
# default weightage given to pixels with positive and negative
# class due to class imbalance
if self.state['cls_weight_neg'] is None:
self.state['cls_weight_neg'] = 0.2
if self.state['cls_weight_pos'] is None:
self.state['cls_weight_pos'] = 0.8
# meters
self.state['meter_loss'] = tnt.meter.AverageValueMeter()
self.state['ap_meter'] = AverageisionMeter()
# time measure
self.state['batch_time'] = tnt.meter.AverageValueMeter()
self.state['data_time'] = tnt.meter.AverageValueMeter()
# display parameters
if self._state('use_pb') is None:
self.state['use_pb'] = True
if self._state('print_freq') is None:
self.state['print_freq'] = 0
# Writer object for Tensorboard Sumarries
self.writer = SummaryWriter()
def _state(self, name):
if name in self.state:
return self.state[name]
def learning(self, model, train_dataset, val_dataset, optimizer=None):
""" This function is called to initiate the learning process for the model
Args:
model (nn.Module): model to be trained or evaluated
train_dataset (torch.utils.data.Dataset): training dataset
val_dataset (torch.utils.data.Dataset): validation dataset
optimizer (torch.optim): optimizer used (Adam)
"""
self.init_learning(model)
# define train and val transform
train_dataset.transform = self.state['train_transform']
train_dataset.target_transform = self._state('train_target_transform')
val_dataset.transform = self.state['val_transform']
val_dataset.target_transform = self._state('val_target_transform')
# data loading code
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=self.state['batch_size'], shuffle=True,
num_workers=self.state['train_workers'])
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=self.state['batch_size'], shuffle=False,
num_workers=self.state['val_workers'])
# optionally resume from a checkpoint
if self._state('resume') is not None:
if os.path.isfile(self.state['resume']):
print("=> loading checkpoint '{}'".format(self.state['resume']))
checkpoint = torch.load(self.state['resume']) # Loading Checkpoint
self.state['start_epoch'] = checkpoint['epoch']
self.state['best_score'] = checkpoint['best_score']
self.state['n_iter'] = checkpoint['n_iter']
model.load_state_dict(checkpoint['state_dict']) # Loading pretrained model weights
print("=> loaded checkpoint '{}' (epoch {})"
.format(self.state['evaluate'], checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(self.state['resume']))
if self.state['use_gpu']:
train_loader.pin_memory = True
val_loader.pin_memory = True
cudnn.benchmark = True
# Using multiple gpus if present
if self.state['multi_gpu']:
model = torch.nn.DataParallel(model, device_ids=self.state['device_ids']).cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# Evaluating a pretrained model on validation set
if self.state['evaluate']:
with torch.no_grad():
self.validate(val_loader, model)
return
# Learning loop
for epoch in range(self.state['start_epoch'], self.state['max_epochs']):
self.state['epoch'] = epoch
self.adjust_learning_rate(optimizer)
# train for one epoch
self.train(train_loader, model, optimizer, epoch)
# evaluate on validation set
with torch.no_grad():
f_score1 = self.validate(val_loader, model)
# remember best f_score and save checkpoint
is_best = f_score1 > self.state['best_score']
self.state['best_score'] = max(f_score1, self.state['best_score'])
# Saving new checkpoints
self.save_checkpoint({
'epoch': epoch + 1,
'arch': self._state('arch'),
'state_dict': model.module.state_dict() if self.state['use_gpu'] else model.state_dict(),
'best_score': self.state['best_score'],
'n_iter' : self.state['n_iter']
}, is_best)
print(' *** best={best:.3f}'.format(best=self.state['best_score']), '\n')
def init_learning(self, model):
"""
This function contains contains the preprocessing tasks to be completed
before starting learning process
Args:
model: model being used
"""
# Normalising image
normalize = transforms.Normalize(mean=model.image_normalization_mean,
std=model.image_normalization_std)
#Converting everything to PyTorch tensor
self.state['train_transform'] = transforms.Compose([
transforms.ToTensor()])
self.state['val_transform'] = transforms.Compose([
transforms.ToTensor()])
self.state['train_target_transform'] = transforms.Compose([
transforms.ToTensor()])
self.state['val_target_transform'] = transforms.Compose([
transforms.ToTensor()])
self.state['best_score'] = 0
# Initialize iteration number with 0
self.state['n_iter'] = 0
# self.state['cls_weight'] = (self.state['cls_weight_neg']*(self.state['target'] ==0).float() + self.state['cls_weight_pos']*(self.state['target'] ==1).float())
# Weights given to cross entropy loss for positive and negative classes due to class imbalance
self.state['cls_weight'] = torch.ones([10])*self.state['cls_weight_pos']
self.state['cls_weight'][0] = self.state['cls_weight_neg']
# (self.state['cls_weight_neg']*(self.state['target'] ==0).float() + self.state['cls_weight_pos']*(self.state['target'] ==1).float())
# Loss Function
self.state['criterion'] = nn.CrossEntropyLoss(self.state['cls_weight'])
def adjust_learning_rate(self, optimizer):
""" Sets the learning rate to the initial LR decayed by 10 every 10 epochs
Args:
optimizer (torch.optim): optimizer used for back-propagation (Adam)
"""
lr = args.lr * (0.1 ** (epoch // 10))
if self.state['epoch'] is not 0 and self.state['epoch'] in self.state['epoch_step']:
print('update learning rate')
for param_group in optimizer.state_dict()['param_groups']:
param_group['lr'] = param_group['lr'] * 0.1
print(param_group['lr'])
self.state['resume'] = 'model_best.pth.tar'
if os.path.isfile(self.state['resume']):
print("=> loading checkpoint '{}'".format(self.state['resume']))
checkpoint = torch.load(self.state['resume'])
# self.state['start_epoch'] = checkpoint['epoch']
self.state['best_score'] = checkpoint['best_score']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(self.state['evaluate'], checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(self.state['resume']))
def train(self, data_loader, model, optimizer, epoch):
"""
Trains the model for 1 epoch
Args:
data_loader (torch.utils.data.DataLoader): training dataloader
model (torch.nn.Module): model being trained
optimizer (torch.optim): optimizer used for back-propagation (Adam)
epoch (int): epoch number
"""
# switch to train mode
model.train()
self.on_start_epoch(True, model, data_loader, optimizer)
# Showing progress bar in the terminal
if self.state['use_pb']:
data_loader = tqdm(data_loader, desc='Training')
end = time.time()
for i, (img1, img2, target, mask) in enumerate(data_loader):
# measure data loading time
self.state['iteration'] = i
self.state['data_time_batch'] = time.time() - end
self.state['data_time'].add(self.state['data_time_batch'])
self.state['img1'] = img1
self.state['img2'] = img2
self.state['target'] = target
self.state['mask'] = mask
self.on_start_batch(True, model, data_loader, optimizer)
# self.state['cls_weight'] = (self.state['cls_weight_neg']*(self.state['target'] ==0).float() + self.state['cls_weight_pos']*(self.state['target'] ==1).float())
# Transfer data to GPUs
if self.state['use_gpu']:
self.state['img1'] = self.state['img1'].cuda()
self.state['img2'] = self.state['img2'].cuda()
self.state['target'] = self.state['target'].cuda()
self.state['mask'] = self.state['mask'].cuda()
# self.state['cls_weight'] = self.state['cls_weight'].cuda()
self.state['criterion'] = self.state['criterion'].cuda()
# Forward pass
self.on_forward(True, model, data_loader, optimizer)
# measure elapsed time
self.state['batch_time_current'] = time.time() - end
self.state['batch_time'].add(self.state['batch_time_current'])
end = time.time()
# measure accuracy
self.on_end_batch(True, model, data_loader)
self.on_end_epoch(True, model, data_loader)
def validate(self, data_loader, model):
"""
Evaluating trained model on validation set
Args:
data_loader (torch.utils.data.DataLoader): training dataloader
model (torch.nn.Module): model being trained
Returns:
F1_Score for validation set
"""
# switch to evaluate mode
model.eval()
self.on_start_epoch(False, model, data_loader)
# Showing progress bar in terminal
if self.state['use_pb']:
data_loader = tqdm(data_loader, desc='Test')
end = time.time()
for i, (img1, img2, target, mask) in enumerate(data_loader):
# measure data loading time
self.state['iteration'] = i
self.state['data_time_batch'] = time.time() - end
self.state['data_time'].add(self.state['data_time_batch'])
self.state['img1'] = img1
self.state['img2'] = img2
self.state['target'] = target
self.state['mask'] = mask
self.on_start_batch(False, model, data_loader)
# self.state['cls_weight'] = (self.state['cls_weight_neg']*(self.state['target'] ==0).float() + self.state['cls_weight_pos']*(self.state['target'] ==1).float())
# Transfer data to GPUs
if self.state['use_gpu']:
self.state['img1'] = self.state['img1'].cuda()
self.state['img2'] = self.state['img2'].cuda()
self.state['target'] = self.state['target'].cuda()
self.state['mask'] = self.state['mask'].cuda()
self.state['cls_weight'] = self.state['cls_weight'].cuda()
self.state['criterion'] = self.state['criterion'].cuda()
# Forward pass
self.on_forward(False, model, data_loader)
# measure elapsed time
self.state['batch_time_current'] = time.time() - end
if self.state['iteration'] > 0:
self.state['batch_time'].add(self.state['batch_time_current'])
end = time.time()
# measure accuracy
self.on_end_batch(False, model, data_loader)
# F1-Score
score = self.on_end_epoch(False, model, data_loader)
return score
def on_start_epoch(self, training, model, data_loader):
"""
Tasks to be performed at the beginning of every epoch
Args:
training (bool): Defines whether we are training or evaluating the model
data_loader (torch.utils.data.DataLoader): training dataloader
model (torch.nn.Module): model being trained
"""
self.state['meter_loss'].reset()
self.state['batch_time'].reset()
self.state['data_time'].reset()
self.state['ap_meter'].reset()
def on_start_batch(self, training, model, data_loader):
"""
Tasks to be performed at the beginning of every iteration
Args:
training (bool): Defines whether we are training or evaluating the model
model (torch.nn.Module): model being trained
data_loader (torch.utils.data.DataLoader): training dataloader
"""
img1 = self.state['img1']
self.state['img1'] = img1[0].float()
self.state['img1_path'] = img1[1]
img2 = self.state['img2']
self.state['img2'] = img2[0].float()
self.state['img2_path'] = img2[1]
target = self.state['target']
self.state['target'] = target[0].float()
self.state['target_path'] = target[1]
mask = self.state['mask']
self.state['mask'] = mask[0].float()
self.state['mask_path'] = mask[1]
def on_forward(self, training, model, data_loader, optimizer=None):
"""
Forward pass for 1 iteration
Args:
training (bool): Defines whether we are training or evaluating the model
model (torch.nn.Module): model being trained
data_loader (torch.utils.data.DataLoader): training dataloader
optimizer (torch.optim): optimizer used for back-propagation (Adam)
"""
# compute output
img1 = (self.state['img1'])
img2 = (self.state['img2'])
target = (self.state['target'])
mask = (self.state['mask'])
self.state['output'] = model(img1, img2)
# Applying softmax to compute probabiliities
self.state['pred'] = F.softmax(self.state['output'], dim=1)
# Finding class with highest probability for each pixel
self.state['thresh_pred'] = torch.argmax(self.state['pred'], dim=1)
# Calculating loss
self.state['loss'] = self.state['criterion']((mask*self.state['output']), (mask*target).squeeze(1).long())
# Writing Tensorboard Summaries
if training:
self.writer.add_image('train/Image1', vutils.make_grid(img1, normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('train/Image2', vutils.make_grid(img2, normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('train/target', vutils.make_grid(target, normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('train/thresh_prediction', vutils.make_grid(self.state['thresh_pred'].float(), normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('train/prediction', vutils.make_grid(self.state['pred'], normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('train/output', vutils.make_grid(self.state['output'], normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_scalar('train/loss', self.state['loss'], self.state['n_iter'])
else:
self.writer.add_image('val/Image1', vutils.make_grid(img1, normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('val/Image2', vutils.make_grid(img2, normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('val/target', vutils.make_grid(target, normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('val/thresh_prediction', vutils.make_grid(self.state['thresh_pred'].float(), normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('val/prediction', vutils.make_grid(self.state['pred'], normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_image('val/output', vutils.make_grid(self.state['output'], normalize=True, scale_each=True), self.state['n_iter'])
self.writer.add_scalar('val/loss', self.state['loss'], self.state['n_iter'])
self.state['n_iter'] = self.state['n_iter']+1 # Increment iteration number
# Backward pass / Back-propagating
if training:
optimizer.zero_grad()
self.state['loss'].backward()
optimizer.step()
def on_end_batch(self, training, model, data_loader, display=True):
"""
Tasks to be performed at the end of every iteration
Args:
training (bool): Defines whether we are training or evaluating the model
model (torch.nn.Module): Model being trained
data_loader (torch.utils.data.DataLoader): Training dataloader
display (bool): Flag for printing runtime results in terminal
"""
# record loss
self.state['loss_batch'] = self.state['loss'].data
self.state['meter_loss'].add(self.state['loss_batch'].cpu())
self.state['ap_meter'].add(self.state['thresh_pred'], self.state['output'].data, self.state['target'])
# Display results along the training
if display and self.state['print_freq'] != 0 and self.state['iteration'] % self.state['print_freq'] == 0:
loss = self.state['meter_loss'].value()[0]
batch_time = self.state['batch_time'].value()[0]
data_time = self.state['data_time'].value()[0]
if training:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
'Data {data_time_current:.3f} ({data_time:.3f})\t'
'Loss {loss_current:.4f} ({loss:.4f})'.format(
self.state['epoch'], self.state['iteration'], len(data_loader),
batch_time_current=self.state['batch_time_current'],
batch_time=batch_time, data_time_current=self.state['data_time_batch'],
data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
else:
print('Test: [{0}/{1}]\t'
'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
'Data {data_time_current:.3f} ({data_time:.3f})'.format(
self.state['iteration'], len(data_loader), batch_time_current=self.state['batch_time_current'],
batch_time=batch_time, data_time_current=self.state['data_time_batch'],
data_time=data_time),'Loss loss_current:' + str(self.state['loss_batch'].cpu().numpy()) + ' loss:' + str(loss.cpu().numpy()))
# Writing records in a csv file
f = open("eval_logs.csv", 'a')
write_string = 'Test: [{0}/{1}]\t Time {batch_time_current:.3f} ({batch_time:.3f})\t Data {data_time_current:.3f} ({data_time:.3f})'.format(
self.state['iteration'], len(data_loader), batch_time_current=self.state['batch_time_current'],
batch_time=batch_time, data_time_current=self.state['data_time_batch'],
data_time=data_time) + (str(self.state['loss_batch'].cpu().numpy()) + ' loss:' + str(loss.cpu().numpy()) + '\n')
f.write(write_string)
f.close()
def on_end_epoch(self, training, model, data_loader, display=True):
"""
Tasks to be performed at the end of every epoch
Args:
training (bool): Defines whether we are training or evaluating the model
model (torch.nn.Module): Model being trained
data_loader (torch.utils.data.DataLoader): Training dataloader
display (bool): Flag for printing runtime results in terminal
Returns:
f1_score (float): F1_score for entire dataset (data_loader)
"""
# Calculating F1 Scores and Average Precisions
TPs, FPs, TNs, FNs = self.state['ap_meter'].value_metrics()
TPs = TPs[1:]
FPs = FPs[1:]
TNs = TNs[1:]
FNs = FNs[1:]
TP = TPs.sum()
FP = FPs.sum()
TN = TNs.sum()
FN = FNs.sum()
precision = TP/max((TP+FP),1)
recall = TP/max((TP+FN),1)
f1_score = 2*precision*recall/max((precision + recall),1)
APs = 100 * self.state['ap_meter'].value()
APs = APs[1:]
map = APs.mean() # Mean Average Precision
loss = self.state['meter_loss'].value()[0]
CATEGORY_TO_LABEL_DICT = self.state['CATEGORY_TO_LABEL_DICT']
LABEL_TO_CATEGORY_DICT = self.state['LABEL_TO_CATEGORY_DICT']
# Printing Epoch Results
if display:
if training:
print('Epoch: [{0}]\t'
'Loss {loss:.4f}\t'
'mAP {map:.3f}\t'
'TP {TP:.0f}\t'
'FP {FP:.0f}\t'
'TN {TN:.0f}\t'
'FN {FN:.0f}\t'
'prec {prec:.3f}\t'
'rec {rec:.3f}\t'
'f1 {f1:.3f}'.format(self.state['epoch'], loss=loss.cpu().numpy(), map=map, TP=TP, FP=FP, TN=TN, FN=FN, prec=precision, rec=recall, f1=f1_score))
if not self.state['evaluate']:
f = open("train_logs.csv", 'a')
# else:
# f = open("eval_logs.csv", 'a')
write_string = '\n{epoch:.0f}\t Train:\t {loss:.4f}\t {mAP:.3f} \t\t'\
.format(epoch = self.state['epoch'], loss=loss.cpu().numpy(), mAP=map )
f.write(write_string)
f.close()
else:
if not self.state['evaluate']:
print('\t\t'
'Loss {loss:.4f}\t'
'mAP {map:.3f}\t'
'TP {TP:.0f}\t'
'FP {FP:.0f}\t'
'TN {TN:.0f}\t'
'FN {FN:.0f}\t'
'prec {prec:.3f}\t'
'rec {rec:.3f}\t'
'f1 {f1:.3f}'.format(loss=loss.cpu().numpy(), map=map, TP=TP, FP=FP, TN=TN, FN=FN, prec=precision, rec=recall, f1=f1_score))
# Writing results in csv file
f = open("train_logs.csv", 'a')
write_string = 'Test:\t {loss:.4f}\t {mAP:.3f}\t {TP:.0f}\t {FP:.0f}\t {TN:.0f}\t {FN:.0f}\t {prec:.3f}\t {rec:.3f}\t {f1:.3f}'\
.format(loss=loss.cpu().numpy(), mAP=map, TP=TP, FP=FP, TN=TN, FN=FN, prec=precision, rec=recall, f1=f1_score)
f.write(write_string)
f.close()
else:
f = open("eval_logs.csv", 'a')
model_name = self._state('resume')
write_string_title = f'\n\n{model_name}\t'
write_string_prec = f'\nPrecision:\t'
write_string_rec = f'\nRecall:\t'
write_string_f1 = f'\nF1 Score:\t'
for ind in range(len(TPs)):
tp = TPs[ind]
fp = FPs[ind]
tn = TNs[ind]
fn = FNs[ind]
prec = tp/max((tp+fp),1)
rec = tp/max((tp+fn),1)
f1 = 2*prec*rec/max((prec + rec),1)
write_string_title += f'{LABEL_TO_CATEGORY_DICT[ind+1]}\t'
write_string_prec += f'{prec:.3}\t'
write_string_rec += f'{rec:.3}\t'
write_string_f1 += f'{f1:.3}\t'
write_string_title += f'Overall\t'
write_string_prec += f'{precision:.3}\t'
write_string_rec += f'{recall:.3}\t'
write_string_f1 += f'{f1_score:.3}\t'
write_string = write_string_title + write_string_prec + write_string_rec + write_string_f1
# print(write_string)
f.write(write_string)
f.close()
self.writer.close()
return f1_score
def save_checkpoint(self, state, is_best, filename='checkpoint.pth.tar'):
"""
Checkpointing after every epoch
Args:
state (dictionary): model state dictionary to be saved
is_best (float): best f1_score uptill now
filename (string): name for current checkpoint file
"""
if self._state('save_model_path') is not None:
filename_ = filename
filename = os.path.join(self.state['save_model_path'], filename_)
if not os.path.exists(self.state['save_model_path']):
os.makedirs(self.state['save_model_path'])
print('save model {filename}'.format(filename=filename))
torch.save(state, filename)
if is_best:
filename_best = 'model_best.pth.tar'
if self._state('save_model_path') is not None:
filename_best = os.path.join(self.state['save_model_path'], filename_best)
shutil.copyfile(filename, filename_best)
if self._state('save_model_path') is not None:
# if self._state('filename_previous_best') is not None:
# os.remove(self._state('filename_previous_best'))
filename_best = os.path.join(self.state['save_model_path'], 'model_best_{score:.4f}.pth.tar'.format(score=state['best_score']))
shutil.copyfile(filename, filename_best)
self.state['filename_previous_best'] = filename_best
# def write_summary_img(self, name, tensor, n_iter):
# self.writer.add_image(name, vutils.make_grid(tensor), n_iter)