-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_wo_mlm_cv.py
212 lines (152 loc) · 5.96 KB
/
inference_wo_mlm_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
# coding: utf-8
# %%
# %%
from pathlib import Path
import pandas as pd
import numpy as np
import torch
import json
from transformers import AutoConfig, AutoTokenizer, AutoModelForMaskedLM, AutoModelWithLMHead, AutoModelForSequenceClassification, TrainingArguments, Trainer
import huggingface_hub as hf_hub
import os
from utils import to_context_free_format, CLASS_MAP, iCLASS_MAP, predictions_to_evaluation_format
import datasets
from sklearn.model_selection import GroupKFold, StratifiedGroupKFold
import random
from eval import eval_across_domains
from load import load_prediction_and_gold
import wandb
# %%
# %%
os.environ["WANDB_API_KEY"] = "get_your_own"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
hf_hub.login("get_your_own",add_to_git_credential=True)
os.environ["WANDB_PROJECT"]="emnlp_pragtag_2023"
os.environ["WANDB_MODE"]="disabled"
# %%
seed = 42
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# %%
def preprocess(item):
item["label"] = torch.tensor(CLASS_MAP[item["label"]]).unsqueeze(0)
return item
# %%
# tokenizer
tokenizer = "microsoft/deberta-base"
model_name = "microsoft/deberta-base"
tokenizer = AutoTokenizer.from_pretrained(tokenizer,do_lower_case=True, force_download=True)
def get_model():
model = AutoModelForSequenceClassification.from_pretrained(model_name, \
num_labels=len(CLASS_MAP), \
problem_type="single_label_classification", \
force_download=True)
return model
# %%
def tokenize(examples):
toks = tokenizer.batch_encode_plus(examples["txt"], padding="max_length", max_length=512, truncation=True,
return_tensors="pt")
toks["labels"] = examples["label"]
return toks
# %%
train_file = Path.cwd().joinpath("public_data","train_inputs_full.json")
with open(train_file,"r") as f:
train_dict_data = json.load(f)
# %%
full_data = datasets.Dataset.from_list(to_context_free_format(train_file))
# %%
full_data_df = full_data.to_pandas()
# %%
train_valid_gkf = GroupKFold()
valid_test_gkf = GroupKFold(n_splits=2)
# %%
def train_and_infer_func(train_df,valid_df,test_df):
# Converting all dataframes to HF dataset
train_ds = datasets.Dataset.from_pandas(train_df)
valid_ds = datasets.Dataset.from_pandas(valid_df)
test_ds = datasets.Dataset.from_pandas(test_df)
data_dict = \
datasets.DatasetDict({"train":train_ds,"valid":valid_ds,"test":test_ds})
data_dict = \
data_dict.map(preprocess) \
.shuffle(seed=seed) \
.map(tokenize, batched=True)
# fine-tuning
batch_size = 10
gradient_accumulation_steps = 2
epochs=60
training_args = TrainingArguments(
output_dir=f"emnlp_pragtag2023_finetuned_wo_mlm_split_{idx}",
overwrite_output_dir=True,
evaluation_strategy="steps",
logging_steps=len(train_ds) // (batch_size),
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=2*batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=2e-5,
weight_decay=0.01,
adam_epsilon=1e-6,
num_train_epochs=epochs,
warmup_ratio=0.1,
save_total_limit=4,
push_to_hub=True,
save_strategy="steps",
save_steps=len(train_ds) // (batch_size),
run_name=model_name.split("/")[-1]+f"_wo_mlm_split_{idx}",
metric_for_best_model="eval_loss",
load_best_model_at_end=True,
greater_is_better=False,
report_to="wandb",
hub_strategy="end",
hub_private_repo=True
)
trainer = Trainer(
model_init=get_model,
args=training_args,
train_dataset=data_dict["train"],
eval_dataset=data_dict["valid"],
)
trainer.train()
predictions = trainer.predict(data_dict["test"])
predicted_classes = np.argmax(predictions.predictions,axis=-1)
prediction_list = []
for test_datapoint, prediction in zip(data_dict["test"],predicted_classes):
prediction_list.append({"sid": test_datapoint["sid"], "label": iCLASS_MAP[prediction]})
r = predictions_to_evaluation_format(prediction_list)
pred_path = f"predicted_wo_mlm_split_{idx}.json"
with open(pred_path, "w+") as f:
json.dump(r, f, indent=4)
id_list = []
for data in r:
id_list.append(data["id"])
test_dict_data = []
for elem in train_dict_data:
if elem["id"] in id_list:
test_dict_data.append(elem)
gold_path = f"gold_data_wo_split_split_{idx}.json"
with open(gold_path,"w") as f:
json.dump(test_dict_data,f,indent=4)
pred, gold = load_prediction_and_gold(pred_path, gold_path)
per_domain, mean = eval_across_domains(gold, pred)
out_path = f"scores_wo_mlm_split_{idx}.txt"
with open(out_path, "w+") as f:
for k, v in per_domain.items():
f.write(f"f1_{k}:{v}\n")
f.write(f"f1_mean:{mean}")
wandb.finish()
# %%
if __name__ == "__main__":
for idx,(train_idx, valid_idx) in enumerate(train_valid_gkf.split(X=full_data_df,y=full_data_df["label"],groups=full_data_df["report_id"])):
# Splitting data into Train and validation
train_df = full_data_df.loc[train_idx,:]
og_valid_df = full_data_df.loc[valid_idx,:]
# Splitting validation data into validation and test
valid_idx,test_idx = \
next(iter(valid_test_gkf.split(X=og_valid_df,y=og_valid_df["label"],groups=og_valid_df["report_id"])))
valid_df = og_valid_df.iloc[valid_idx]
test_df = og_valid_df.iloc[test_idx]
train_and_infer_func(train_df,valid_df,test_df)