forked from NVIDIA/NVFlare
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlit_net.py
72 lines (59 loc) · 2.36 KB
/
lit_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch.nn as nn
import torch.optim as optim
from net import Net
from pytorch_lightning import LightningModule
from torchmetrics import Accuracy
NUM_CLASSES = 10
criterion = nn.CrossEntropyLoss()
class LitNet(LightningModule):
def __init__(self):
super().__init__()
self.save_hyperparameters()
self.model = Net()
self.train_acc = Accuracy(task="multiclass", num_classes=NUM_CLASSES)
self.valid_acc = Accuracy(task="multiclass", num_classes=NUM_CLASSES)
# (optional) pass additional information via self.__fl_meta__
self.__fl_meta__ = {}
def forward(self, x):
out = self.model(x)
return out
def training_step(self, batch, batch_idx):
x, labels = batch
outputs = self(x)
loss = criterion(outputs, labels)
self.train_acc(outputs, labels)
self.log("train_loss", loss)
self.log("train_acc", self.train_acc, on_step=True, on_epoch=False)
return loss
def evaluate(self, batch, stage=None):
x, labels = batch
outputs = self(x)
loss = criterion(outputs, labels)
self.valid_acc(outputs, labels)
if stage:
self.log(f"{stage}_loss", loss)
self.log(f"{stage}_acc", self.valid_acc, on_step=True, on_epoch=True)
return outputs
def validation_step(self, batch, batch_idx):
self.evaluate(batch, "val")
def test_step(self, batch, batch_idx):
self.evaluate(batch, "test")
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any:
return self.evaluate(batch)
def configure_optimizers(self):
optimizer = optim.SGD(self.parameters(), lr=0.001, momentum=0.9)
return {"optimizer": optimizer}