forked from NVIDIA/NVFlare
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10_structured_fl.py
139 lines (110 loc) · 5.18 KB
/
cifar10_structured_fl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from net import Net
# (1) import nvflare client API
import nvflare.client as flare
# (optional) set a fix place so we don't need to download everytime
DATASET_PATH = "/tmp/nvflare/data"
# (optional) We change to use GPU to speed things up.
# if you want to use CPU, change DEVICE="cpu"
DEVICE = "cuda:0"
PATH = "./cifar_net.pth"
def main():
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR10(root=DATASET_PATH, train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root=DATASET_PATH, train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
net = Net()
# (2) initializes NVFlare client API
flare.init()
# (3) decorates with flare.train and load model from the first argument
# wraps training logic into a method
@flare.train
def train(input_model=None, total_epochs=2, lr=0.001):
net.load_state_dict(input_model.params)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9)
# (optional) use GPU to speed things up
net.to(DEVICE)
# (optional) calculate total steps
steps = total_epochs * len(trainloader)
for epoch in range(total_epochs): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
# (optional) use GPU to speed things up
inputs, labels = data[0].to(DEVICE), data[1].to(DEVICE)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f"[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}")
running_loss = 0.0
print("Finished Training")
torch.save(net.state_dict(), PATH)
# (4) construct trained FL model
output_model = flare.FLModel(params=net.cpu().state_dict(), meta={"NUM_STEPS_CURRENT_ROUND": steps})
return output_model
# (5) decorates with flare.evaluate and load model from the first argument
@flare.evaluate
def fl_evaluate(input_model=None):
return evaluate(input_weights=input_model.params)
# wraps evaluate logic into a method
def evaluate(input_weights):
net.load_state_dict(input_weights)
# (optional) use GPU to speed things up
net.to(DEVICE)
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
# (optional) use GPU to speed things up
images, labels = data[0].to(DEVICE), data[1].to(DEVICE)
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# return evaluation metrics
return 100 * correct // total
while flare.is_running():
# (6) receives FLModel from NVFlare
input_model = flare.receive()
print(f"current_round={input_model.current_round}")
# (7) call fl_evaluate method before training
# to evaluate on the received/aggregated model
global_metric = fl_evaluate(input_model)
print(f"Accuracy of the global model on the 10000 test images: {global_metric} %")
# call train method
train(input_model, total_epochs=2, lr=0.001)
# call evaluate method
metric = evaluate(input_weights=torch.load(PATH))
print(f"Accuracy of the trained model on the 10000 test images: {metric} %")
if __name__ == "__main__":
main()