-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathVGG16_oxflower17.py
87 lines (76 loc) · 3.36 KB
/
VGG16_oxflower17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
import keras
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten,Dropout
from keras.optimizers import Adam
#Load oxflower17 dataset
import tflearn.datasets.oxflower17 as oxflower17
from sklearn.model_selection import train_test_split
x, y = oxflower17.load_data(one_hot=True)
#Split train and test data
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2,shuffle = True)
#Data augumentation with Keras tools
from keras.preprocessing.image import ImageDataGenerator
img_gen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
#Build VGG16Net model
def VGG16Net(width, height, depth, classes):
model = Sequential()
model.add(Conv2D(64,(3,3),strides=(1,1),input_shape=(224,224,3),padding='same',activation='relu'))
model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(128,(3,2),strides=(1,1),padding='same',activation='relu'))
model.add(Conv2D(128,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(4096,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(17,activation='softmax'))
return model
VGG16_model = VGG16Net(224,224,3,17)
VGG16_model.summary()
VGG16_model.compile(optimizer=Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-08),loss = 'categorical_crossentropy',metrics=['accuracy'])
#Start training using dataaugumentation generator
History = VGG16_model.fit_generator(img_gen.flow(X_train*255, y_train, batch_size = 16),
steps_per_epoch = len(X_train)/16, validation_data = (X_test,y_test), epochs = 30 )
#Plot Loss and Accuracy
import matplotlib.pyplot as plt
plt.figure(figsize = (15,5))
plt.subplot(1,2,1)
plt.plot(History.history['acc'])
plt.plot(History.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.subplot(1,2,2)
plt.plot(History.history['loss'])
plt.plot(History.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
plt.show()