-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
230 lines (179 loc) · 6.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import matplotlib.pyplot as plt
import seaborn as sns
from imutils import paths
import keras
from keras.models import Sequential
from keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout
from keras.regularizers import l2
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
import tensorflow as tf
from keras import datasets, layers, models
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import confusion_matrix, f1_score, recall_score, cohen_kappa_score, average_precision_score
import cv2
import numpy as np
directory = r'C:\Users\Sunkanmi-PC\Documents\School\University_files\500_level\Final-Year-Project\code\Training'
image_paths = list(paths.list_images(directory))
img_height = img_width = 120
# Training
train_ds = tf.keras.utils.image_dataset_from_directory(
directory,
labels="inferred",
label_mode="int",
color_mode="rgb",
batch_size=32,
image_size=(img_width, img_width),
shuffle=True,
validation_split=0.20,
subset="training",
seed=123,
follow_links=False,
crop_to_aspect_ratio=False
)
val_directory = r'C:\Users\Sunkanmi-PC\Documents\School\University_files\500_level\Final-Year-Project\code\Training'
# validation
val_ds = tf.keras.utils.image_dataset_from_directory(
val_directory,
labels='inferred',
label_mode='int',
color_mode='rgb',
batch_size=32,
image_size=(img_height, img_width),
shuffle=True,
validation_split=0.20,
subset="validation",
seed=123,
follow_links=False,
crop_to_aspect_ratio=False
)
class_names = train_ds.class_names
print(class_names)
AUTOTUNE = tf.data.AUTOTUNE
# Cache training
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
# For training
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
normalization_layer = layers.Rescaling(1./255)
num_classes = len(class_names)
# Reduce overfitting
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.RandomRotation(0.2),
layers.RandomZoom(0.2),
]
)
model = Sequential([
data_augmentation,
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, 3, padding='same', activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001)),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001)),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001)),
layers.MaxPooling2D(),
layers.Dropout(0.1),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
epochs=10
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=8)
# filename='log.csv'
# history_logger = tf.keras.callbacks.CSVLogger(filename, separator=",", append=True)
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[es]
)
testDir = r'C:\Users\Sunkanmi-PC\Documents\School\University_files\500_level\Final-Year-Project\code\Testing'
# test data
test_data = tf.keras.preprocessing.image_dataset_from_directory(
directory,
labels='inferred',
label_mode='int',
seed=123,
image_size=(img_height, img_width),
batch_size=32
)
loss, accuracy = model.evaluate(test_data)
true_labels = []
for images, labels in test_data:
true_labels.extend(labels.numpy())
true_labels = np.array(true_labels)
# Calculate predictions
predictions = model.predict(test_data)
predicted_labels = tf.argmax(predictions, axis=1)
# Calculate precision
precision = tf.keras.metrics.Precision()(true_labels, predicted_labels)
# Calculate recall
recall = recall_score(true_labels, predicted_labels, average='weighted')
# Calculate F1-score
f1 = f1_score(true_labels, predicted_labels, average='weighted')
# Calculate Cohen's Kappa
kappa = cohen_kappa_score(true_labels, predicted_labels)
# Calculate Mean Average Precision (mAP)
# Assuming you have true labels and predicted probabilities for each class
# For mAP calculation, convert predicted probabilities to binary class predictions
binary_predictions = tf.one_hot(predicted_labels, depth=num_classes)
mAP = average_precision_score(tf.one_hot(true_labels, depth=num_classes), binary_predictions, average='macro')
# Calculate additional performance metrics
# 1. Balanced Accuracy
balanced_accuracy = recall_score(true_labels, predicted_labels, average='macro')
# Calculate confusion matrix
confusion_mat = confusion_matrix(true_labels, predicted_labels)
# Display the evaluation metrics
print("Accuracy:", accuracy)
print("Precision:", precision.numpy())
print("Recall:", recall)
print("F1-score:", f1)
print("Cohen's Kappa:", kappa)
print("Mean Average Precision (mAP):", mAP)
print("Balanced Accuracy:", balanced_accuracy)
# Plot the confusion matrix
class_names = test_data.class_names
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_mat, annot=True, fmt="d", cmap='Blues',
xticklabels=class_names, yticklabels=class_names)
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
# Accuracy and loss
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
# epochs_range = range(epochs)
# plt.figure(figsize=(8, 8))
# plt.subplot(1, 2, 1)
# plt.plot(acc, label='Training Accuracy')
# plt.plot(val_acc, label='Validation Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')
# plt.subplot(1, 2, 2)
# plt.plot(loss, label='Training Loss')
# plt.plot(val_loss, label='Validation Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.show()