-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai.py
56 lines (47 loc) · 1.54 KB
/
ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
list1 = []
list2 = []
rank = []
k=0
# Load the model
model = load_model('./model/keras_model.h5')
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
image = Image.open('./picture/test1.jpg')
#resize the image to a 224x224 with the same strategy as in TM2:
#resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.ANTIALIAS)
#turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array
# run the inference
prediction = model.predict(data)
print(prediction)
for i in range(0,len(prediction[0])):
list1.append(prediction[0,i])
list2.append(prediction[0,i])
list2.sort(reverse=True)
list2 = list2[0:3]
for i in range(1,len(prediction[0])):
if(list1[i]==list2[0]):
rank.append(i)
for i in range(1,len(prediction[0])):
if(list1[i]==list2[1]):
rank.append(i)
for i in range(1,len(prediction[0])):
if(list1[i]==list2[2]):
rank.append(i)
great_dic = { name:value for name, value in zip(rank, list2) }
print(list1)
print(list2)
print(rank)
print(great_dic)