-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_marctable.py
183 lines (146 loc) · 5.67 KB
/
test_marctable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import json
import pathlib
from io import StringIO
import pandas
from marctable.marc import MARC, SchemaFieldError, SchemaSubfieldError, crawl
from marctable.utils import _mapping, dataframe_iter, to_csv, to_dataframe, to_parquet
from pytest import raises
marc = MARC.from_avram()
def test_crawl() -> None:
# crawl the first 10 field definitions from the loc site (to save time)
outfile = StringIO()
crawl(10, quiet=True, outfile=outfile)
outfile.seek(0)
# ensure the Avram JSON parses and looks ok
schema = json.load(outfile)
assert schema
assert len(schema["fields"]) == 10
# ensure that the Avram JSON for a field looks ok
assert schema["fields"]["015"]
f015 = schema["fields"]["015"]
assert f015["label"] == "National Bibliography Number"
assert f015["url"] == "https://www.loc.gov/marc/bibliographic/bd015.html"
assert len(f015["subfields"]) == 6
# ensure that the Avram JSON for a subfield looks ok
assert f015["subfields"]["2"]
f0152 = f015["subfields"]["2"]
assert f0152["label"] == "Source"
assert f0152["code"] == "2"
assert f0152["repeatable"] is False
def test_marc() -> None:
assert len(marc.fields) == 215
def test_get_field() -> None:
assert marc.get_field("245")
with raises(SchemaFieldError, match="abc is not a defined field tag in Avram"):
marc.get_field("abc")
def test_get_subfield() -> None:
assert marc.get_subfield("245", "a").label == "Title"
with raises(SchemaSubfieldError, match="- is not a valid subfield in field 245"):
marc.get_subfield("245", "-") is None
def test_non_repeatable_field() -> None:
f245 = marc.get_field("245")
assert f245.tag == "245"
assert f245.label == "Title Statement"
assert f245.repeatable is False
def test_repeatable_field() -> None:
f650 = marc.get_field("650")
assert f650.tag == "650"
assert f650.label == "Subject Added Entry-Topical Term"
assert f650.repeatable is True
def test_df() -> None:
df = to_dataframe(open("test-data/utf8.marc", "rb"))
assert len(df.columns) == 215
assert len(df) == 10612
assert df.iloc[0]["F008"] == "000110s2000 ohu f m eng "
# 245 is not repeatable
assert (
df.iloc[0]["F245"]
== "Leak testing CD-ROM [computer file] / technical editors, Charles N. "
"Jackson, Jr., Charles N. Sherlock ; editor, Patrick O. Moore."
)
# 650 is repeatable
assert df.iloc[0]["F650"] == ["Leak detectors.", "Gas leakage."]
def test_custom_fields_df() -> None:
df = to_dataframe(open("test-data/utf8.marc", "rb"), rules=["245", "650"])
assert len(df) == 10612
# should only have two columns in the dataframe
assert len(df.columns) == 2
assert df.columns[0] == "F245"
assert df.columns[1] == "F650"
assert (
df.iloc[0]["F245"]
== "Leak testing CD-ROM [computer file] / technical editors, Charles N. "
"Jackson, Jr., Charles N. Sherlock ; editor, Patrick O. Moore."
)
assert df.iloc[0]["F650"] == ["Leak detectors.", "Gas leakage."]
def test_custom_subfields_df() -> None:
df = to_dataframe(open("test-data/utf8.marc", "rb"), rules=["245a", "260c"])
assert len(df) == 10612
assert len(df.columns) == 2
assert df.columns[0] == "F245a"
assert df.columns[1] == "F260c"
# 245a is not repeatable
assert df.iloc[0]["F245a"] == "Leak testing CD-ROM"
# 260c is repeatable
assert df.iloc[0]["F260c"] == ["c2000."]
def test_field_mapping() -> None:
m = _mapping(["245", "650"])
assert m["245"] is None
assert m["650"] is None
def test_field_subfield_mapping() -> None:
m = _mapping(["245a", "650ax", "260"])
assert set(m["245"]) == set(["a"])
assert set(m["650"]) == set(["a", "x"])
assert m["260"] is None
def test_batch() -> None:
dfs = dataframe_iter(open("test-data/utf8.marc", "rb"), batch=1000)
df = next(dfs)
assert type(df), pandas.DataFrame
assert len(df) == 1000
def test_to_csv() -> None:
to_csv(
open("test-data/utf8.marc", "rb"), open("test-data/utf8.csv", "w"), batch=1000
)
df = pandas.read_csv("test-data/utf8.csv")
assert len(df) == 10612
assert len(df.columns) == 215
assert (
df.iloc[0]["F245"]
== "Leak testing CD-ROM [computer file] / technical editors, Charles N. "
"Jackson, Jr., Charles N. Sherlock ; editor, Patrick O. Moore."
)
def test_to_parquet() -> None:
to_parquet(
open("test-data/utf8.marc", "rb"),
open("test-data/utf8.parquet", "wb"),
batch=1000,
)
assert pathlib.Path("test-data/utf8.parquet").is_file()
df = pandas.read_parquet("test-data/utf8.parquet")
assert len(df) == 10612
assert len(df.columns) == 215
def test_to_parquet_with_rules() -> None:
to_parquet(
open("test-data/utf8.marc", "rb"),
open("test-data/utf8.parquet", "wb"),
batch=1000,
rules=["001", "245", "650v"],
)
assert pathlib.Path("test-data/utf8.parquet").is_file()
df = pandas.read_parquet("test-data/utf8.parquet")
assert len(df) == 10612
assert len(df.columns) == 3
def test_xml() -> None:
# this mirrors test_df, but works off of the MARCXML instead
df = to_dataframe(open("test-data/marc.xml", "rb"))
assert len(df.columns) == 215
assert len(df) == 10631
assert df.iloc[0]["F008"] == "000110s2000 ohu f m eng "
# 245 is not repeatable
assert (
df.iloc[0]["F245"]
== "Leak testing CD-ROM [computer file] / technical editors, Charles N. "
"Jackson, Jr., Charles N. Sherlock ; editor, Patrick O. Moore."
)
# 650 is repeatable
assert df.iloc[0]["F650"] == ["Leak detectors.", "Gas leakage."]