forked from open-mmlab/OpenPCDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcenterpoint_pillar_1x.yaml
116 lines (93 loc) · 2.87 KB
/
centerpoint_pillar_1x.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
POINT_CLOUD_RANGE: [-74.88, -74.88, -2, 74.88, 74.88, 4.0]
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [ 0.32, 0.32, 6.0 ]
MAX_POINTS_PER_VOXEL: 20
MAX_NUMBER_OF_VOXELS: {
'train': 150000,
'test': 150000
}
MODEL:
NAME: CenterPoint
VFE:
NAME: PillarVFE
WITH_DISTANCE: False
USE_ABSLOTE_XYZ: True
USE_NORM: True
NUM_FILTERS: [ 64, 64 ]
MAP_TO_BEV:
NAME: PointPillarScatter
NUM_BEV_FEATURES: 64
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [ 3, 5, 5 ]
LAYER_STRIDES: [ 1, 2, 2 ]
NUM_FILTERS: [ 64, 128, 256 ]
UPSAMPLE_STRIDES: [ 1, 2, 4 ]
NUM_UPSAMPLE_FILTERS: [ 128, 128, 128 ]
DENSE_HEAD:
NAME: CenterHead
CLASS_AGNOSTIC: False
CLASS_NAMES_EACH_HEAD: [
['Vehicle', 'Pedestrian', 'Cyclist']
]
SHARED_CONV_CHANNEL: 64
USE_BIAS_BEFORE_NORM: True
NUM_HM_CONV: 2
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2},
'center_z': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
FEATURE_MAP_STRIDE: 1
NUM_MAX_OBJS: 500
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POST_PROCESSING:
SCORE_THRESH: 0.1
POST_CENTER_LIMIT_RANGE: [-80, -80, -10.0, 80, 80, 10.0]
MAX_OBJ_PER_SAMPLE: 500
NMS_CONFIG:
NMS_TYPE: nms_gpu
NMS_THRESH: 0.7
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
EVAL_METRIC: waymo
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 6
NUM_EPOCHS: 30
OPTIMIZER: adam_onecycle
LR: 0.003
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10