forked from cmu-l3/anlp-spring2025-hw1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
87 lines (70 loc) · 3.53 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from typing import Callable, Iterable, Tuple
import torch
from torch.optim import Optimizer
class AdamW(Optimizer):
def __init__(
self,
params: Iterable[torch.nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
max_grad_norm: float = None,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias, max_grad_norm=max_grad_norm)
super().__init__(params, defaults)
def step(self, closure: Callable = None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
# TODO: Clip gradients if max_grad_norm is set
if group['max_grad_norm'] is not None:
torch.nn.utils.clip_grad_norm_(group['params'], group['max_grad_norm'])
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead")
# State should be stored in this dictionary
state = self.state[p]
# TODO: Access hyperparameters from the `group` dictionary
alpha = group["lr"]
beta1, beta2 = group["betas"]
# TODO: Update first and second moments of the gradients
if "exp_avg" not in state:
state["exp_avg"] = torch.zeros_like(p.data)
if "exp_avg_sq" not in state:
state["exp_avg_sq"] = torch.zeros_like(p.data)
if "step" not in state:
state["step"] = 0.0
m, v = state["exp_avg"], state["exp_avg_sq"]
state["step"] += 1.0
t = state["step"]
m.mul_(beta1).add_(grad, alpha=1 - beta1)
v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# TODO: Bias correction
# Please note that we are using the "efficient version" given in
# https://arxiv.org/abs/1412.6980
bias_correction1 = 1 - beta1**t
bias_correction2 = 1 - beta2**t
v_hat = v / bias_correction2
# TODO: Update parameters
denom = v_hat.sqrt().add_(group["eps"])
step_size = alpha / bias_correction1 if group["correct_bias"] else alpha
p.data.addcdiv_(m, denom, value=-step_size)
# TODO: Add weight decay after the main gradient-based updates.
# Please note that the learning rate should be incorporated into this update.
if abs(group["weight_decay"]) > 1e-9:
p.data.add_(p.data, alpha=-step_size * group["weight_decay"])
return loss