-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDESCRIPTION
40 lines (40 loc) · 1.13 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Package: smashr
Encoding: UTF-8
Type: Package
Maintainer: Peter Carbonetto <[email protected]>
Authors@R: c(person("Zhengrong","Xing",role="aut"),
person("Matthew","Stephens",role="aut"),
person("Kaiqian","Zhang",role="ctb"),
person("Peter","Carbonetto",role=c("aut","cre"),
email="[email protected]"))
Title: Smoothing by Adaptive Shrinkage in R
Version: 1.2-9
Date: 2021-06-07
Description: Fast, wavelet-based Empirical Bayes shrinkage methods for
signal denoising, including smoothing Poisson-distributed data and
Gaussian-distributed data with possibly heteroskedastic error. The
algorithms implement the methods described Z. Xing & M. Stephens,
2016 <arXiv:1605.07787>.
License: GPL (>= 3)
Depends: R (>= 3.1.1),
Imports:
utils,
stats,
Rcpp (>= 0.11.1),
data.table,
caTools,
wavethresh,
ashr
Suggests:
knitr,
rmarkdown,
MASS,
EbayesThresh,
testthat
LinkingTo: Rcpp
NeedsCompilation: yes
LazyData: true
URL: http://github.com/stephenslab/smashr
BugReports: http://github.com/stephenslab/smashr/issues
VignetteBuilder: knitr
RoxygenNote: 7.1.1