From 050d779b20edafd907263bbb257fa92b15519150 Mon Sep 17 00:00:00 2001 From: Peter Carbonetto Date: Tue, 13 Aug 2024 15:57:36 -0500 Subject: [PATCH] A few improvements to examine_pbmc68k_more.R. --- analysis/examine_pbmc68k_more.R | 18 ++++++------------ 1 file changed, 6 insertions(+), 12 deletions(-) diff --git a/analysis/examine_pbmc68k_more.R b/analysis/examine_pbmc68k_more.R index f8e17a2..1d59651 100644 --- a/analysis/examine_pbmc68k_more.R +++ b/analysis/examine_pbmc68k_more.R @@ -16,6 +16,7 @@ k <- 6 diag(cor(fit1$L,lda1@gamma)) diag(cor(fit2$L,lda2@gamma)) diag(cor(fit1$F,fit2$F)) +diag(cor(fit1$L,fit2$L)) # Try to cluster the cells. L <- fit2$L @@ -64,15 +65,6 @@ dat <- data.frame(gene = genes$symbol, dat <- transform(dat,lfc = log2(f2/f0)) subset(dat,lfc > 10 & f2 > 0.001) -# B cells. -k <- 5 -dat <- data.frame(gene = genes$symbol, - f0 = apply(fit2$F[,-k],1,max), - f1 = fit1$F[,k], - f2 = fit2$F[,k]) -dat <- transform(dat,lfc = log2(f2/f0)) -subset(dat,lfc > 4 & f2 > 0.0001) - # NK cells. k <- 3 dat <- data.frame(gene = genes$symbol, @@ -82,14 +74,14 @@ dat <- data.frame(gene = genes$symbol, dat <- transform(dat,lfc = log2(f2/f0)) subset(dat,lfc > 4 & f2 > 0.001) -# X cells. -k <- 2 +# B cells. +k <- 5 dat <- data.frame(gene = genes$symbol, f0 = apply(fit2$F[,-k],1,max), f1 = fit1$F[,k], f2 = fit2$F[,k]) dat <- transform(dat,lfc = log2(f2/f0)) -subset(dat,lfc > 10 & f2 > 0.001) +subset(dat,lfc > 4 & f2 > 0.0001) # Ribosomal protein genes. k <- 6 @@ -99,3 +91,5 @@ dat <- data.frame(gene = genes$symbol, f2 = fit2$F[,k]) dat <- transform(dat,lfc = log2(f2/f0),r21 = f2/f1) subset(dat,lfc > 0.5 & f2 > 0.0001) + +# TO DO: Add scatterplots showing in more detail differences in topic 6.