-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathTest.py
493 lines (410 loc) · 17.5 KB
/
Test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import logging
import numpy as np
import mxnet as mx
import cPickle
import time
from ctypes import *
import DataGenerator as dg
from DataIter import CarReID_Iter, CarReID_Test_Iter, CarReID_Feat_Query_Iter, CarReID_Feat_Iter, CarReID_Softmax_Iter
from DataIter import CarReID_TestQuick_Iter
from Solver import CarReID_Solver
from Predictor import CarReID_Predictor, CarReID_Feature_Predictor, CarReID_Compare_Predictor, CarReID_Softmax_Predictor
#from MDL_PARAM import model2_softmax as now_model
#from MDL_PARAM import model2_proxy_nca as now_model
#from MDL_PARAM import model3_proxy_nca as now_model
from MDL_PARAM import model4_proxy_nca as now_model
def Do_Test():
print 'Testing...'
# set up logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
ctx = mx.gpu(1)
data_shape = (1, 3, 256, 256)
data_query_fn = '/home/mingzhang/data/car_ReID_for_zhangming/test/cam_0.list'
data_query = CarReID_Test_Iter(['part1_data'], [data_shape], data_query_fn)
# data_set_fn = '/home/mingzhang/data/car_ReID_for_zhangming/test/cam_1.list'
# data_set_fn = '/home/mingzhang/data/car_ReID_for_zhangming/test/cam_1.1w.list'
data_set_fn = '/home/mingzhang/data/car_ReID_for_zhangming/test/cam_1.1k.list'
# data_set_fn = '/home/mingzhang/data/car_ReID_for_zhangming/test/cam_1.200.list'
data_set = CarReID_Test_Iter(['part2_data'], [data_shape], data_set_fn)
batch_size = data_shape[0]
reid_net = now_model.CreateModel_Color_Test(ctx, batch_size, data_shape[2:])
# lr_scheduler = mx.lr_scheduler.FactorScheduler(dlr, 0.9)
param_prefix = 'MDL_PARAM/params0/car_reid'
predictor = CarReID_Predictor(param_prefix, reid_net, ctx, data_shape)
print 'Testing...'
resotre_whichone = 15
predictor.predict(data_query, data_set, whichone=resotre_whichone, logger=logger)
print 'over...'
return
def Do_Feature_Test(restore, ctx=mx.cpu()):
print 'Extracting feature...'
fdir = '/home/mingzhang/data/car_ReID_for_zhangming/test_train'
fdir = '/home/mingzhang/data/car_ReID_for_zhangming/test'
# fdir = '/mnt/ssd2/minzhang/Re-ID_select'
fdir = '/home/mingzhang/data/Re-ID_select'
# set up logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
data_shape = (1, 3, 256, 256)
data_shape = (1, 3, 299, 299)
data_query_fn = fdir + '/cam_0.list'
data_query = CarReID_Test_Iter(['part1_data'], [data_shape], data_query_fn, normalize=True)
data_set_fn = fdir + '/cam_1.list'
# data_set_fn = fdir + '/cam_1.1w.list'
# data_set_fn = fdir + '/cam_1.2k.list'
# data_set_fn = fdir + '/cam_1.200.list'
data_set = CarReID_Test_Iter(['part1_data'], [data_shape], data_set_fn, normalize=True)
batch_size = data_shape[0]
# reid_feature_net, _ = now_model.CreateModel_Color_Split_test()
reid_feature_net, _ = now_model.CreateModel_Color_Split_test2()
# lr_scheduler = mx.lr_scheduler.FactorScheduler(dlr, 0.9)
# param_prefix = 'MDL_PARAM/params2_softmax/car_reid'
param_prefix = 'MDL_PARAM/params2_proxy_nca_combine/car_reid'
param_prefix = 'MDL_PARAM/params2_proxy_nca/car_reid'
param_prefix = 'MDL_PARAM/params3_proxy_nca/car_reid'
predictor_feature = CarReID_Feature_Predictor(param_prefix, reid_feature_net, ctx, data_shape)
print 'Extracting feature...'
resotre_whichone = restore
feat_savepath = fdir + '/cam_feat_0'
predictor_feature.predict(data_query, feat_savepath, whichone=resotre_whichone, logger=logger)
feat_savepath = fdir + '/cam_feat_1'
predictor_feature.predict(data_set, feat_savepath, whichone=resotre_whichone, logger=logger)
print 'over...'
return
def Do_Compare_Test(restore, ctx=mx.cpu()):
print 'Comparing feature...'
fdir = '/home/mingzhang/data/car_ReID_for_zhangming/test_train'
fdir = '/home/mingzhang/data/car_ReID_for_zhangming/test'
fdir = '/mnt/ssd2/minzhang/Re-ID_select'
fdir = '/home/mingzhang/data/Re-ID_select'
# set up logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
data_shape = (1000, 16384) #model0
data_shape = (1000, 1536) #model2
data_shape = (1000, 512) #model1_softmax
data_shape = (1000, 256) #model1_softmax2, model2_softmax
data_shape1 = (1, 128) #model2_proxy_nca
data_shape2 = (10000, 128) #model2_proxy_nca
data_query_fn = fdir+'/cam_feat_0.list'
data_query = CarReID_Feat_Query_Iter(['feature1_data'], [data_shape1], data_query_fn)
data_set_fn = fdir+'/cam_feat_1.list'
# data_set_fn = fdir+'/cam_feat_1.1w.list'
# data_set_fn = fdir+'/cam_feat_1.2k.list'
# data_set_fn = fdir+'/cam_feat_1.1k.list'
data_set = CarReID_Feat_Iter(['feature2_data'], [data_shape2], data_set_fn)
batch_size = data_shape[0]
# _, reid_cmp_net = now_model.CreateModel_Color_Split_test()
_, reid_cmp_net = now_model.CreateModel_Color_Split_test2(data_shape2[0], data_shape2[1])
# lr_scheduler = mx.lr_scheduler.FactorScheduler(dlr, 0.9)
# param_prefix = 'MDL_PARAM/params2_softmax/car_reid'
param_prefix = 'MDL_PARAM/params2_proxy_nca_combine/car_reid'
param_prefix = 'MDL_PARAM/params2_proxy_nca/car_reid'
param_prefix = 'MDL_PARAM/params3_proxy_nca/car_reid'
predictor_compare = CarReID_Compare_Predictor(param_prefix, reid_cmp_net, ctx, data_shape2)
print 'Comparing...'
resotre_whichone = restore
predictor_compare.predict(data_query, data_set, whichone=resotre_whichone, logger=logger)
print 'over...'
return
def Do_Softmax_Test_Acc(ctx, resotre_whichone):
print 'Softmax test accuracy...'
# set up logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
batch_size = 10
data_shape = (batch_size, 3, 256, 256)
label_shape = (batch_size, )
datafn = '/home/mingzhang/data/car_ReID_for_zhangming/data_each.list' #43928 calss number.
# datafn = '/home/mingzhang/data/car_ReID_for_zhangming/data_each.10.list'
data_train = CarReID_Softmax_Iter(['data'], [data_shape], ['label'], [label_shape], datafn)
clsnum=43928
reid_net = now_model.CreateModel_Color(ctx, batch_size, data_shape[2:], clsnum)
# lr_scheduler = mx.lr_scheduler.FactorScheduler(dlr, 0.9)
param_prefix = 'MDL_PARAM/params2_softmax/car_reid'
predictor = CarReID_Softmax_Predictor(param_prefix, reid_net, ctx, data_shape)
print 'predicting...'
showp = 100
predictor.predict(data_train, showperiod=showp, whichone=resotre_whichone, logger=logger)
print 'over...'
return
def load_checkpoint(model, prefix, epoch):
param_name = '%s-%04d.params' % (prefix, epoch)
save_dict = mx.nd.load(param_name)
arg_params = {}
aux_params = {}
for k, value in save_dict.items():
arg_type, name = k.split(':', 1)
if arg_type == 'arg':
arg_params[name] = value
elif arg_type == 'aux':
aux_params[name] = value
else:
raise ValueError("Invalid param file " + fname)
model.set_params(arg_params, aux_params, allow_missing=True)
arg_params, aux_params = model.get_params()
logging.info('Load checkpoint from \"%s\"', param_name)
return arg_params, aux_params
def create_predict_feature_model(ctxs, provide_data, param_prefix, load_paramidx):
reid_feature_net, _ = now_model.CreateModel_Color_Split_test()
data_names = []
for dn in provide_data:
data_names.append(dn[0])
reid_model = mx.mod.Module(context=ctxs, symbol=reid_feature_net, data_names=data_names)
reid_model.bind(data_shapes=provide_data, for_training=False)
arg_params, aux_params = load_checkpoint(reid_model, param_prefix, load_paramidx)
return reid_model
def do_predict_feature(predict_model, data_iter, savefolder, nn):
data_iter.reset()
needbnum = int(np.ceil(nn*1.0/data_iter.batch_size))
for data in data_iter:
print 'feature extracting...%.2f%%(%d/%d, %d), to %s'%(data_iter.cur_batch*100.0/data_iter.num_batches, data_iter.cur_batch, data_iter.num_batches, needbnum, savefolder)
t0 = time.time()
predict_model.forward(data)
feats = predict_model.get_outputs()[0].asnumpy()
t1 = time.time()
print '%d,%d:%.2f ms'%(data_iter.cur_batch, data_iter.batch_size, (t1-t0)*1000)
labels = data.label[0].asnumpy()
cPickle.dump([labels, feats, data_iter.paths], open('%s/%d.feat'%(savefolder, data_iter.cur_batch), 'wb'))
if needbnum>0 and data_iter.cur_batch>=needbnum:
break
pass
def create_compare_feature_model(ctxs, provide_data):
imgnum, featdim = provide_data[1][1]
_, reid_feature_net = now_model.CreateModel_Color_Split_test()
data_names = []
for dn in provide_data:
data_names.append(dn[0])
reid_model = mx.mod.Module(context=ctxs, symbol=reid_feature_net, data_names=data_names)
reid_model.bind(data_shapes=provide_data, for_training=False)
reid_model.init_params()
return reid_model
def do_compare_feature(predict_model, bsz, query_list, distractor_list, savefolder):
for qfn in query_list:
labels_q, datas_q, paths = cPickle.load(open(qfn, 'rb'))
qlen = np.sum(labels_q[:, 0]>-1)
for qi in xrange(qlen):
data1 = datas_q[qi:qi+1]
rep_data1 = data1.repeat(bsz, axis=0)
nd_data1 = mx.nd.array(rep_data1)
id1 = str(labels_q[qi, 0])
type1 = labels_q[qi, 1]
path1 = paths[qi]
name1 = path1.split('/')[-1]
cmpfile = open(savefolder+'/cmp=%s=%s.list'%(id1, name1), 'w')
t0 = time.time()
for dfn in distractor_list:
labels_d, datas_d, paths_d = cPickle.load(open(dfn, 'rb'))
nd_data2 = mx.nd.array(datas_d)
data = mx.io.DataBatch([nd_data1, nd_data2], [])
predict_model.forward(data)
cmp_scores = predict_model.get_outputs()[0].asnumpy()
cmp_scores = np.sum(cmp_scores, axis=1)
dlen = np.sum(labels_d[:, 0]>-1)
writestrs = ''
for bi in xrange(dlen):
id2 = labels_d[bi, 0]
path2 = paths_d[bi]
name2 = path2.split('/')[-1]
cmp_score = cmp_scores[bi]
writestrs += '%s,%s,%f\n'%(id2, name2, cmp_score)
cmpfile.write(writestrs)
cmpfile.flush()
cmpfile.close()
t1 = time.time()
print '%s, %d/%d->time cost:%.3f s'%(id1, qi, qlen, (t1-t0))
pass
rank_func = CDLL('./ranker/libranker.so')
def init_ranker_c(database, indexes):
dbsize, featdim = database.shape
rank_func.init_ranker(database.ctypes.data_as(POINTER(c_float)), indexes.ctypes.data_as(POINTER(c_int)), dbsize, featdim)
pass
def do_ranker_c(query, topNIdxes, topNScores):
featdim = query.shape[0]
topN = topNIdxes.shape[0]
topNIdxes[:] = 0
topNScores[:] = 0
rank_func.do_ranker(query.ctypes.data_as(POINTER(c_float)), featdim,
topNIdxes.ctypes.data_as(POINTER(c_int)),
topNScores.ctypes.data_as(POINTER(c_float)), topN)
pass
def do_fill_dataset_c(distractor_list, savefolder=''):
print 'loading whole distractor set...'
dbsize = 0
featdim = 0
for dfn in distractor_list:
labels_d, datas_d, paths_d = cPickle.load(open(dfn, 'rb'))
realnum = np.sum(labels_d[:, 0] > -1)
dbsize += realnum
featdim = datas_d.shape[1]
datas_dall = np.zeros((dbsize, featdim), dtype=np.float32)
labels_dall = np.zeros((dbsize, 2), dtype=np.int32)
print 'data size:%d, feat dim:%d'%(dbsize, featdim)
paths_dall = []
dbposnow = 0
for dfn in distractor_list:
labels_d, datas_d, paths_d = cPickle.load(open(dfn, 'rb'))
realnum = np.sum(labels_d[:, 0] > -1)
datas_dall[dbposnow:dbposnow+realnum] = datas_d[:realnum]
labels_dall[dbposnow:dbposnow+realnum] = labels_d[:realnum]
paths_dall += paths_d[:realnum]
dbposnow += realnum
assert(dbposnow==dbsize)
indexes = np.asarray(range(dbsize), dtype=np.int32)
init_ranker_c(datas_dall, indexes)
return labels_dall, paths_dall
def do_compare_feature_c(labels_dall, paths_dall, query_list, qtype='', savefolder=''):
print 'quering...'
qcars_list = []
topN = 100+1
topNIdxs = np.zeros((topN,), dtype=np.int32)
topNScores = np.zeros((topN,), dtype=np.float32)
samenum_q = np.zeros((topN, 2), dtype=np.int32)
allnum_q = np.zeros((topN, 2), dtype=np.int32)
idall_list = labels_dall[:, 0].tolist()
idall_dict = {}
for tmp0, tmp1 in zip(idall_list, range(len(idall_list))):
if idall_dict.has_key(tmp0):
idall_dict[tmp0] += [tmp1]
else:
idall_dict[tmp0] = [tmp1]
for qfn in query_list:
print qfn
labels_q, datas_q, paths = cPickle.load(open(qfn, 'rb'))
qlen = np.sum(labels_q[:, 0]>-1)
t0 = time.time()
for qi in xrange(qlen):
data1 = datas_q[qi]
id1 = labels_q[qi, 0]
tp1 = labels_q[qi, 1]
qcarinfo = {}
qcarinfo['id'] = id1
qcarinfo['path'] = paths[qi]
do_ranker_c(data1, topNIdxs, topNScores)
# if id1==2293:
# print qi+1, topNIdxs, topNScores
allid2 = labels_dall[topNIdxs, 0]
alltp2 = labels_dall[topNIdxs, 1]
qcarinfo['gpath'] = []
for idxtmp in idall_dict[id1]:
groundpath = paths_dall[idxtmp]
qcarinfo['gpath'] += [groundpath]
carlist = []
for idx in xrange(topN):
car = {}
car['id'] = allid2[idx]
car['path'] = paths_dall[topNIdxs[idx]]
car['score'] = topNScores[idx]
carlist.append(car)
if tp1==0:
if id1 in allid2[:idx+1]:
samenum_q[idx, 0] += 1
allnum_q[idx, 0] += 1
else:
if id1 in allid2[:idx+1]:
samenum_q[idx, 1] += 1
allnum_q[idx, 1] += 1
qcarinfo['data'] = carlist
qcars_list.append(qcarinfo)
t1 = time.time()
topName = 'topN_%s.bin'%(qtype)
cPickle.dump(qcars_list, open(topName, 'wb'))
print 'saved topN into', topName
ratios = samenum_q / (allnum_q + 10**-16)
needN = np.asarray(range(0, topN, 10))
print 'topN :', needN+1
print 'has plate:', ratios[needN][:, 0].T, 'num:%d'%allnum_q[0, 0]
print 'no plate:', ratios[needN][:, 1].T, 'num:%d'%allnum_q[0, 1]
print 'time cost:%.3f s'%(t1-t0)
pass
def Do_Feature_Test_Fast(load_paramidx):
print 'Extracting feature Fast...'
ctxs = [mx.gpu(0), mx.gpu(1), mx.gpu(2), mx.gpu(3)]
ctxs = [mx.gpu(0), mx.gpu(1)]
# set up logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
batchsize = 400 * len(ctxs)
data_shape = (batchsize, 3, 200, 200)
label_shape = (batchsize, 2)
# param_prefix = 'MDL_PARAM/params2_proxy_nca_combine/car_reid'
# param_prefix = 'MDL_PARAM/params2_proxy_nca/car_reid'
# param_prefix = 'MDL_PARAM/params3_proxy_nca/car_reid'
# param_prefix = 'MDL_PARAM/params3_proxy_nca.bak1/car_reid'
# param_prefix = 'MDL_PARAM/params3_proxy_nca.rowmask/car_reid'
# param_prefix = 'MDL_PARAM/params3_proxy_nca.blockmask/car_reid'
# param_prefix = 'MDL_PARAM/params3_proxy_nca.back1/car_reid'
param_prefix = 'MDL_PARAM/params4_proxy_nca/car_reid'
# param_prefix = 'MDL_PARAM/params4_proxy_nca.back2/car_reid'
# param_prefix = 'MDL_PARAM/params4_proxy_nca.back3/car_reid'
feature_model = create_predict_feature_model(ctxs, [['part1_data', data_shape]], param_prefix, load_paramidx)
feature_model.symbol.save(param_prefix + '-predict.json')
# fdir = '/mnt/ssd2/minzhang/ReID_BigBenchMark/mingzhang'
# fdir = '/home/mingzhang/data/ReID_BigBenchMark/mingzhang'
fdir = '/home/mingzhang/data/ReID_BigBenchMark/mingzhang2'
# fdir = '/home/mingzhang/data/Re-ID_select/mingzhang'
neednums = [0, 0, 0, 0]
data_query_fn = [fdir+'/front_image_list_query_3200.list',
fdir+'/back_image_list_query_3200.list',
fdir+'/front_image_list_distractor.list',
fdir+'/back_image_list_distractor.list'
]
save_folder_fn = [fdir+'/front_image_query',
fdir+'/back_image_query',
fdir+'/front_image_distractor',
fdir+'/back_image_distractor'
]
t0 = time.time()
for nn, d1, d2 in zip(neednums, data_query_fn, save_folder_fn):
data_query = CarReID_TestQuick_Iter(['part1_data'], [data_shape], ['id'], [label_shape], [d1])
do_predict_feature(feature_model, data_query, d2, nn)
t1 = time.time()
print 'extracted all features costs', t1-t0
print 'over...'
return
def Do_Feature_Compare_Fast():
print 'comparing feature...'
ctxs = [mx.gpu(0)]
bsz = 800
data_shape1 = (bsz, 128) #model2_proxy_nca
data_shape2 = (bsz, 128) #model2_proxy_nca
provide_data = [['feature1_data', data_shape1], ['feature2_data', data_shape2]]
# fdir = '/mnt/ssd2/minzhang/Re-ID_select'
# querylist_fn = [fdir+'/cam_feat_quick_0.list']
# distractorlist_fn = [fdir+'/cam_feat_quick_1.list']
savefolder = 'Result'
# fdir = '/mnt/ssd2/minzhang/ReID_BigBenchMark/mingzhang'
fdir = '/home/mingzhang/data/ReID_BigBenchMark/mingzhang2'
# fdir = '/home/mingzhang/data/Re-ID_select/mingzhang'
querylist_fn = [fdir+'/front_image_query.list',
fdir+'/back_image_query.list']
distractorlist_fn = [fdir+'/front_image_distractor.list',
fdir+'/back_image_distractor.list']
qtypes = ['front',
'back']
query_lists = []
for qfn in querylist_fn:
query_list_one = dg.get_datalist2([qfn])
query_lists.append(query_list_one)
distractor_list = dg.get_datalist2(distractorlist_fn)
if 0:
compare_model = create_compare_feature_model(ctxs, provide_data)
do_compare_feature(compare_model, bsz, query_list, distractor_list, savefolder)
else:
labels_dall, paths_dall = do_fill_dataset_c(distractor_list)
for qtype, qlist in zip(qtypes, query_lists):
do_compare_feature_c(labels_dall, paths_dall, qlist, qtype)
pass
if __name__=='__main__':
# Do_Test()
restore_whichone = 3
ctx = mx.gpu(0)
# Do_Softmax_Test_Acc(ctx, restore_whichone)
# Do_Feature_Test(restore_whichone, ctx)
# Do_Compare_Test(restore_whichone, ctx)
#############
if 1:
Do_Feature_Test_Fast(restore_whichone)
else:
Do_Feature_Compare_Fast()