-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGSNet.py
181 lines (105 loc) · 4.67 KB
/
GSNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import numpy as np
import time
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data.sampler import SubsetRandomSampler
# Network class
class GSNet(nn.Module):
def __init__(self, input_dim, output_dim,
layer_sizes, kernel_sizes, temp_file='.best-model-parameters.pt'):
super(GSNet, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.temp_file = temp_file
self.layers = []
self.dos = []
d = input_dim[-1]
# Add layers and dropout
for ls, ks in zip(layer_sizes, kernel_sizes):
self.layers.append(nn.Conv2d(d, ls, ks))
self.dos.append(nn.Dropout2d(0.3))
d = ls
self.layers = nn.ModuleList(self.layers)
self.dos = nn.ModuleList(self.dos)
self.loss = nn.BCELoss()
self.optimizer = torch.optim.Adam(self.parameters(), lr=0.0001) # 0.0001 works
self.start_out = int((self.input_dim[0] - np.sum([x-1 for x in kernel_sizes]) - self.output_dim[0]) / 2)
def forward(self, X):
out = X
for l,do in zip(self.layers[:-1], self.dos):
out = nn.LeakyReLU(0.1)(l(out))
if self.training:
out = do(out)
out = nn.Sigmoid()(self.layers[-1](out))
i1,i2 = self.start_out, self.start_out + self.output_dim[0]
j1,j2 = self.start_out, self.start_out + self.output_dim[1]
return out[:,:,i1:i2,j1:j2]
def train_net(self, data, batch_size=256, epochs=500, splits=None):
self.train(True)
self.best_val = 9999999
self.saved_model = None
losses = [[],[]]
indx = np.arange(len(data))
if splits is None:
r = np.random.rand(len(data))
indx_train = indx[r < 0.8]
indx_val = indx[r >= 0.8]
else:
indx_train = indx[splits==0]
indx_val = indx[splits==1]
train_sampler = SubsetRandomSampler(indx_train)
val_sampler = SubsetRandomSampler(indx_val)
train_generator = torch.utils.data.DataLoader(data, batch_size=batch_size, sampler=train_sampler)
val_generator = torch.utils.data.DataLoader(data, batch_size=32, sampler=val_sampler)
for e in range(epochs):
if e % 1 == 0:
print(e)
ls = []
vls = []
for b_x, b_y in train_generator:
self.optimizer.zero_grad()
y_hat = self.forward(b_x)
loss = self.loss(y_hat, b_y)
loss.backward()
self.optimizer.step()
ls.append(loss.cpu().detach())
with torch.no_grad():
for b_x, b_y in val_generator:
y_hat = self.forward(b_x)
loss = self.loss(y_hat, b_y)
vls.append(loss.cpu().detach())
tl = torch.mean(torch.tensor(ls))
vl = torch.mean(torch.tensor(vls))
print(tl, vl)
losses[0].append(tl)
losses[1].append(vl)
if vl < self.best_val:
self.best_val = vl
self.saved_model = self.state_dict().copy()
torch.save(self.state_dict(), self.temp_file)
self.load_state_dict(self.saved_model)
return losses
# Evaluate the performance of the network
def eval_net(self, data):
self.eval()
run = True
iters = 1
while run:
iters += 1
generator = torch.utils.data.DataLoader(data, batch_size=128)
with torch.no_grad():
for i,b_x in generator:
y_hat = self.forward(b_x)
data.write_indx(i.numpy(), y_hat.cpu().numpy())
del generator
torch.cuda.empty_cache()
run = data.load_next()
time.sleep(0.5)
data.final_eval()
def load_model(self, file_name=None):
if file_name is None:
file_name = self.temp_file
self.load_state_dict(torch.load(file_name))
self.eval()