-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathderived.tex
12534 lines (11482 loc) · 436 KB
/
derived.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Derived Categories}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
We first discuss triangulated categories and localization in triangulated
categories. Next, we prove that the homotopy category of complexes in an
additive category is a triangulated category. Once this is done we define
the derived category of an abelian category as the localization of the
homotopy category with respect to quasi-isomorphisms.
A good reference is Verdier's thesis \cite{Verdier}.
\section{Triangulated categories}
\label{section-triangulated-categories}
\noindent
Triangulated categories are a convenient tool to describe the type
of structure inherent in the derived category of an abelian category.
Some references are \cite{Verdier}, \cite{KS}, and \cite{Neeman}.
\section{The definition of a triangulated category}
\label{section-triangulated-definitions}
\noindent
In this section we collect most of the definitions concerning triangulated
and pre-triangulated categories.
\begin{definition}
\label{definition-triangle}
Let $\mathcal{D}$ be an additive category. Let
$[1] : \mathcal{D} \to \mathcal{D}$, $E \mapsto E[1]$
be an additive functor which is an auto-equivalence of $\mathcal{D}$.
\begin{enumerate}
\item A {\it triangle} is a sextuple
$(X, Y, Z, f, g, h)$ where $X, Y, Z \in \Ob(\mathcal{D})$ and
$f : X \to Y$, $g : Y \to Z$ and $h : Z \to X[1]$ are morphisms
of $\mathcal{D}$.
\item A {\it morphism of triangles}
$(X, Y, Z, f, g, h) \to (X', Y', Z', f', g', h')$
is given by morphisms $a : X \to X'$, $b : Y \to Y'$ and $c : Z \to Z'$
of $\mathcal{D}$ such that
$b \circ f = f' \circ a$, $c \circ g = g' \circ b$ and
$a[1] \circ h = h' \circ c$.
\end{enumerate}
\end{definition}
\noindent
A morphism of triangles is visualized by the following
commutative diagram
$$
\xymatrix{
X \ar[r] \ar[d]^a &
Y \ar[r] \ar[d]^b &
Z \ar[r] \ar[d]^c &
X[1] \ar[d]^{a[1]} \\
X' \ar[r] &
Y' \ar[r] &
Z' \ar[r] &
X'[1]
}
$$
In the setting of Definition \ref{definition-triangle}, we
write $[0] = \text{id}$, for $n > 0$ we denote $[n]$ the $n$-fold
composition of $[1]$, we choose a quasi-inverse $[-1]$ of $[1]$, and
we set $[-n]$ equal to the $n$-fold composition of $[-1]$. Then
$\{[n]\}_{n \in \mathbf{Z}}$ is a collection of additive auto-equivalences
of $\mathcal{D}$ indexed by $n \in \mathbf{Z}$ such that we are given
isomorphisms of functors $[n] \circ [m] \cong [n + m]$.
\medskip\noindent
Here is the definition of a triangulated category as given in
Verdier's thesis.
\begin{definition}
\label{definition-triangulated-category}
A {\it triangulated category} consists of a triple
$(\mathcal{D}, \{[n]\}_{n\in \mathbf{Z}}, \mathcal{T})$
where
\begin{enumerate}
\item $\mathcal{D}$ is an additive category,
\item $[1] : \mathcal{D} \to \mathcal{D}$, $E \mapsto E[1]$
is an additive auto-equivalence and $[n]$ for $n \in \mathbf{Z}$ is
as discussed above, and
\item $\mathcal{T}$ is a set of triangles (Definition \ref{definition-triangle})
called the {\it distinguished triangles}
\end{enumerate}
subject to the following conditions
\begin{enumerate}
\item[TR1] Any triangle isomorphic to a distinguished triangle is
a distinguished triangle. Any triangle of the form
$(X, X, 0, \text{id}, 0, 0)$ is distinguished.
For any morphism $f : X \to Y$ of $\mathcal{D}$ there exists a
distinguished triangle of the form $(X, Y, Z, f, g, h)$.
\item[TR2] The triangle $(X, Y, Z, f, g, h)$ is distinguished
if and only if the triangle $(Y, Z, X[1], g, h, -f[1])$ is.
\item[TR3] Given a solid diagram
$$
\xymatrix{
X \ar[r]^f \ar[d]^a &
Y \ar[r]^g \ar[d]^b &
Z \ar[r]^h \ar@{-->}[d] &
X[1] \ar[d]^{a[1]} \\
X' \ar[r]^{f'} &
Y' \ar[r]^{g'} &
Z' \ar[r]^{h'} &
X'[1]
}
$$
whose rows are distinguished triangles and which satisfies
$b \circ f = f' \circ a$, there exists a morphism
$c : Z \to Z'$ such that $(a, b, c)$ is a morphism of triangles.
\item[TR4] Given objects $X$, $Y$, $Z$ of $\mathcal{D}$, and morphisms
$f : X \to Y$, $g : Y \to Z$, and distinguished triangles
$(X, Y, Q_1, f, p_1, d_1)$,
$(X, Z, Q_2, g \circ f, p_2, d_2)$,
and
$(Y, Z, Q_3, g, p_3, d_3)$,
there exist
morphisms $a : Q_1 \to Q_2$ and $b : Q_2 \to Q_3$ such
that
\begin{enumerate}
\item $(Q_1, Q_2, Q_3, a, b, p_1[1] \circ d_3)$ is a
distinguished triangle,
\item the triple $(\text{id}_X, g, a)$ is
a morphism of triangles
$(X, Y, Q_1, f, p_1, d_1) \to (X, Z, Q_2, g \circ f, p_2, d_2)$, and
\item the triple $(f, \text{id}_Z, b)$ is a morphism of triangles
$(X, Z, Q_2, g \circ f, p_2, d_2) \to (Y, Z, Q_3, g, p_3, d_3)$.
\end{enumerate}
\end{enumerate}
We will call $(\mathcal{D}, [\ ], \mathcal{T})$ a
{\it pre-triangulated category} if TR1, TR2 and TR3
hold.\footnote{We use $[\ ]$ as an abbreviation for the
family $\{[n]\}_{n\in \mathbf{Z}}$.}
\end{definition}
\noindent
The explanation of TR4 is that if you think of $Q_1$ as
$Y/X$, $Q_2$ as $Z/X$ and $Q_3$ as $Z/Y$, then TR4(a) expresses
the isomorphism $(Z/X)/(Y/X) \cong Z/Y$ and TR4(b) and TR4(c)
express that we can compare the triangles $X \to Y \to Q_1 \to X[1]$
etc with morphisms of triangles. For a more precise reformulation
of this idea see the proof of Lemma \ref{lemma-two-split-injections}.
\medskip\noindent
The sign in TR2 means that if $(X, Y, Z, f, g, h)$ is a distinguished triangle
then in the long sequence
\begin{equation}
\label{equation-rotate}
\ldots \to
Z[-1] \xrightarrow{-h[-1]}
X \xrightarrow{f}
Y \xrightarrow{g}
Z \xrightarrow{h}
X[1] \xrightarrow{-f[1]}
Y[1] \xrightarrow{-g[1]}
Z[1] \to \ldots
\end{equation}
each four term sequence gives a distinguished triangle.
\medskip\noindent
As usual we abuse notation and we simply speak of a (pre-)triangulated
category $\mathcal{D}$ without explicitly introducing notation for the
additional data. The notion of a pre-triangulated category is
useful in finding statements equivalent to TR4.
\medskip\noindent
We have the following definition of a triangulated functor.
\begin{definition}
\label{definition-exact-functor-triangulated-categories}
Let $\mathcal{D}$, $\mathcal{D}'$ be pre-triangulated
categories. An {\it exact functor}, or a {\it triangulated functor}
from $\mathcal{D}$ to $\mathcal{D}'$ is a functor
$F : \mathcal{D} \to \mathcal{D}'$ together
with given functorial isomorphisms $\xi_X : F(X[1]) \to F(X)[1]$
such that for every distinguished triangle
$(X, Y, Z, f, g, h)$ of $\mathcal{D}$ the triangle
$(F(X), F(Y), F(Z), F(f), F(g), \xi_X \circ F(h))$
is a distinguished triangle of $\mathcal{D}'$.
\end{definition}
\noindent
An exact functor is additive, see
Lemma \ref{lemma-exact-functor-additive}.
When we say two triangulated categories are equivalent we mean that
they are equivalent in the $2$-category of triangulated categories.
A $2$-morphism $a : (F, \xi) \to (F', \xi')$ in this $2$-category is
simply a transformation of functors $a : F \to F'$ which is compatible
with $\xi$ and $\xi'$, i.e.,
$$
\xymatrix{
F \circ [1] \ar[r]_\xi \ar[d]_{a \star 1} & [1] \circ F \ar[d]^{1 \star a} \\
F' \circ [1] \ar[r]^{\xi'} & [1] \circ F'
}
$$
commutes.
\begin{definition}
\label{definition-triangulated-subcategory}
Let $(\mathcal{D}, [\ ], \mathcal{T})$ be a pre-triangulated category.
A {\it pre-triangulated subcategory}\footnote{This definition may be
nonstandard. If $\mathcal{D}'$ is a full subcategory then $\mathcal{T}'$
is the intersection of the set of triangles in $\mathcal{D}'$ with
$\mathcal{T}$, see
Lemma \ref{lemma-triangulated-subcategory}.
In this case we drop $\mathcal{T}'$ from the notation.}
is a pair $(\mathcal{D}', \mathcal{T}')$ such that
\begin{enumerate}
\item $\mathcal{D}'$ is an additive subcategory of $\mathcal{D}$
which is preserved under $[1]$ and such that
$[1] : \mathcal{D}' \to \mathcal{D}'$ is an auto-equivalence,
\item $\mathcal{T}' \subset \mathcal{T}$ is a subset such that for every
$(X, Y, Z, f, g, h) \in \mathcal{T}'$ we have
$X, Y, Z \in \Ob(\mathcal{D}')$ and
$f, g, h \in \text{Arrows}(\mathcal{D}')$, and
\item $(\mathcal{D}', [\ ], \mathcal{T}')$ is a pre-triangulated
category.
\end{enumerate}
If $\mathcal{D}$ is a triangulated category, then we say
$(\mathcal{D}', \mathcal{T}')$ is a {\it triangulated subcategory} if
it is a pre-triangulated subcategory and
$(\mathcal{D}', [\ ], \mathcal{T}')$ is a triangulated category.
\end{definition}
\noindent
In this situation the inclusion functor
$\mathcal{D}' \to \mathcal{D}$ is an exact functor
with $\xi_X : X[1] \to X[1]$ given by the identity on $X[1]$.
\medskip\noindent
We will see in
Lemma \ref{lemma-composition-zero}
that for a distinguished triangle $(X, Y, Z, f, g, h)$
in a pre-triangulated category the composition $g \circ f : X \to Z$ is zero.
Thus the sequence (\ref{equation-rotate}) is a complex.
A homological functor is one that turns this complex into a long
exact sequence.
\begin{definition}
\label{definition-homological}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $\mathcal{A}$ be an abelian category.
An additive functor $H : \mathcal{D} \to \mathcal{A}$ is called
{\it homological} if for every distinguished triangle
$(X, Y, Z, f, g, h)$ the sequence
$$
H(X) \to H(Y) \to H(Z)
$$
is exact in the abelian category $\mathcal{A}$. An additive functor
$H : \mathcal{D}^{opp} \to \mathcal{A}$ is called {\it cohomological}
if the corresponding functor $\mathcal{D} \to \mathcal{A}^{opp}$ is
homological.
\end{definition}
\noindent
If $H : \mathcal{D} \to \mathcal{A}$ is a homological functor
we often write $H^n(X) = H(X[n])$ so that $H(X) = H^0(X)$.
Our discussion of TR2 above implies that a distinguished triangle
$(X, Y, Z, f, g, h)$ determines a long exact sequence
\begin{equation}
\label{equation-long-exact-cohomology-sequence}
\xymatrix@C=3pc{
H^{-1}(Z) \ar[r]^{H(h[-1])} &
H^0(X) \ar[r]^{H(f)} &
H^0(Y) \ar[r]^{H(g)} &
H^0(Z) \ar[r]^{H(h)} &
H^1(X)
}
\end{equation}
This will be called the {\it long exact sequence} associated to the
distinguished triangle and the homological functor. As indicated
we will not use any signs for the morphisms in the long exact
sequence. This has the side effect that maps in the long exact sequence
associated to the rotation (TR2) of a distinguished triangle differ
from the maps in the sequence above by some signs.
\begin{definition}
\label{definition-delta-functor}
Let $\mathcal{A}$ be an abelian category.
Let $\mathcal{D}$ be a triangulated category.
A {\it $\delta$-functor from $\mathcal{A}$ to $\mathcal{D}$} is
given by a functor $G : \mathcal{A} \to \mathcal{D}$ and
a rule which assigns to every short exact sequence
$$
0 \to A \xrightarrow{a} B \xrightarrow{b} C \to 0
$$
a morphism $\delta = \delta_{A \to B \to C} : G(C) \to G(A)[1]$
such that
\begin{enumerate}
\item the triangle
$(G(A), G(B), G(C), G(a), G(b), \delta_{A \to B \to C})$
is a distinguished triangle of $\mathcal{D}$
for any short exact sequence as above, and
\item for every morphism $(A \to B \to C) \to (A' \to B' \to C')$
of short exact sequences the diagram
$$
\xymatrix{
G(C) \ar[d] \ar[rr]_{\delta_{A \to B \to C}} & &
G(A)[1] \ar[d] \\
G(C') \ar[rr]^{\delta_{A' \to B' \to C'}} & &
G(A')[1]
}
$$
is commutative.
\end{enumerate}
In this situation we call
$(G(A), G(B), G(C), G(a), G(b), \delta_{A \to B \to C})$
the {\it image of the short exact sequence under the
given $\delta$-functor}.
\end{definition}
\noindent
Note how a $\delta$-functor comes equipped with additional structure.
Strictly speaking it does not make sense to say that a given
functor $\mathcal{A} \to \mathcal{D}$ is a $\delta$-functor, but we
will often do so anyway.
\section{Elementary results on triangulated categories}
\label{section-elementary-results}
\noindent
Most of the results in this section are proved for pre-triangulated categories
and a fortiori hold in any triangulated category.
\begin{lemma}
\label{lemma-composition-zero}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $(X, Y, Z, f, g, h)$ be a distinguished triangle.
Then $g \circ f = 0$,
$h \circ g = 0$ and $f[1] \circ h = 0$.
\end{lemma}
\begin{proof}
By TR1 we know $(X, X, 0, 1, 0, 0)$ is a distinguished triangle.
Apply TR3 to
$$
\xymatrix{
X \ar[r] \ar[d]^1 &
X \ar[r] \ar[d]^f &
0 \ar[r] \ar@{-->}[d] &
X[1] \ar[d]^{1[1]} \\
X \ar[r]^f &
Y \ar[r]^g &
Z \ar[r]^h &
X[1]
}
$$
Of course the dotted arrow is the zero map. Hence the commutativity of
the diagram implies that $g \circ f = 0$. For the other cases
rotate the triangle, i.e., apply TR2.
\end{proof}
\begin{lemma}
\label{lemma-representable-homological}
Let $\mathcal{D}$ be a pre-triangulated category.
For any object $W$ of $\mathcal{D}$ the functor
$\Hom_\mathcal{D}(W, -)$ is homological, and the functor
$\Hom_\mathcal{D}(-, W)$ is cohomological.
\end{lemma}
\begin{proof}
Consider a distinguished triangle $(X, Y, Z, f, g, h)$.
We have already seen that $g \circ f = 0$, see
Lemma \ref{lemma-composition-zero}.
Suppose $a : W \to Y$ is a morphism such that $g \circ a = 0$.
Then we get a commutative diagram
$$
\xymatrix{
W \ar[r]_1 \ar@{..>}[d]^b &
W \ar[r] \ar[d]^a &
0 \ar[r] \ar[d]^0 &
W[1] \ar@{..>}[d]^{b[1]} \\
X \ar[r] & Y \ar[r] & Z \ar[r] & X[1]
}
$$
Both rows are distinguished triangles (use TR1 for the top row).
Hence we can fill the dotted arrow $b$ (first rotate using TR2,
then apply TR3, and then rotate back). This proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-third-isomorphism-triangle}
Let $\mathcal{D}$ be a pre-triangulated category.
Let
$$
(a, b, c) : (X, Y, Z, f, g, h) \to (X', Y', Z', f', g', h')
$$
be a morphism of distinguished triangles. If two among $a, b, c$
are isomorphisms so is the third.
\end{lemma}
\begin{proof}
Assume that $a$ and $c$ are isomorphisms.
For any object $W$ of $\mathcal{D}$ write
$H_W( - ) = \Hom_\mathcal{D}(W, -)$.
Then we get a commutative diagram of abelian groups
$$
\xymatrix{
H_W(Z[-1]) \ar[r] \ar[d] &
H_W(X) \ar[r] \ar[d] &
H_W(Y) \ar[r] \ar[d] &
H_W(Z) \ar[r] \ar[d] &
H_W(X[1]) \ar[d] \\
H_W(Z'[-1]) \ar[r] &
H_W(X') \ar[r] &
H_W(Y') \ar[r] &
H_W(Z') \ar[r] &
H_W(X'[1])
}
$$
By assumption the right two and left two vertical arrows are bijective.
As $H_W$ is homological by
Lemma \ref{lemma-representable-homological}
and the five lemma
(Homology, Lemma \ref{homology-lemma-five-lemma})
it follows that the middle vertical arrow is an isomorphism.
Hence by Yoneda's lemma, see
Categories, Lemma \ref{categories-lemma-yoneda}
we see that $b$ is an isomorphism.
This implies the other cases by rotating (using TR2).
\end{proof}
\begin{remark}
\label{remark-special-triangles}
Let $\mathcal{D}$ be an additive category with translation functors $[n]$
as in Definition \ref{definition-triangle}. Let us call a triangle
$(X, Y, Z, f, g, h)$ {\it special}\footnote{This is nonstandard notation.}
if for every object $W$ of $\mathcal{D}$
the long sequence of abelian groups
$$
\ldots \to
\Hom_\mathcal{D}(W, X) \to
\Hom_\mathcal{D}(W, Y) \to
\Hom_\mathcal{D}(W, Z) \to
\Hom_\mathcal{D}(W, X[1]) \to \ldots
$$
is exact. The proof of Lemma \ref{lemma-third-isomorphism-triangle}
shows that if
$$
(a, b, c) : (X, Y, Z, f, g, h) \to (X', Y', Z', f', g', h')
$$
is a morphism of special triangles and if two among $a, b, c$
are isomorphisms so is the third. There is a dual statement for
{\it co-special} triangles, i.e., triangles which turn into long
exact sequences on applying the functor $\Hom_\mathcal{D}(-, W)$.
Thus distinguished triangles are special and co-special, but in
general there are many more (co-)special triangles, than there are
distinguished triangles.
\end{remark}
\begin{lemma}
\label{lemma-third-map-square-zero}
Let $\mathcal{D}$ be a pre-triangulated category.
Let
$$
(0, b, 0), (0, b', 0) : (X, Y, Z, f, g, h) \to (X, Y, Z, f, g, h)
$$
be endomorphisms of a distinguished triangle. Then $bb' = 0$.
\end{lemma}
\begin{proof}
Picture
$$
\xymatrix{
X \ar[r] \ar[d]^0 &
Y \ar[r] \ar[d]^{b, b'} \ar@{..>}[ld]^\alpha &
Z \ar[r] \ar[d]^0 \ar@{..>}[ld]^\beta &
X[1] \ar[d]^0 \\
X \ar[r] & Y \ar[r] & Z \ar[r] & X[1]
}
$$
Applying
Lemma \ref{lemma-representable-homological}
we find dotted arrows $\alpha$ and $\beta$ such that
$b' = f \circ \alpha$ and $b = \beta \circ g$. Then
$bb' = \beta \circ g \circ f \circ \alpha = 0$
as $g \circ f = 0$ by
Lemma \ref{lemma-composition-zero}.
\end{proof}
\begin{lemma}
\label{lemma-third-map-idempotent}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $(X, Y, Z, f, g, h)$ be a distinguished triangle.
If
$$
\xymatrix{
Z \ar[r]_h \ar[d]_c & X[1] \ar[d]^{a[1]} \\
Z \ar[r]^h & X[1]
}
$$
is commutative and $a^2 = a$, $c^2 = c$, then there exists a
morphism $b : Y \to Y$ with $b^2 = b$ such that
$(a, b, c)$ is an endomorphism of the triangle $(X, Y, Z, f, g, h)$.
\end{lemma}
\begin{proof}
By TR3 there exists a morphism $b'$ such that
$(a, b', c)$ is an endomorphism of $(X, Y, Z, f, g, h)$.
Then $(0, (b')^2 - b', 0)$ is also an endomorphism. By
Lemma \ref{lemma-third-map-square-zero}
we see that $(b')^2 - b'$ has square zero.
Set $b = b' - (2b' - 1)((b')^2 - b') = 3(b')^2 - 2(b')^3$.
A computation shows that $(a, b, c)$ is an endomorphism and
that $b^2 - b = (4(b')^2 - 4b' - 3)((b')^2 - b')^2 = 0$.
\end{proof}
\begin{lemma}
\label{lemma-cone-triangle-unique-isomorphism}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $f : X \to Y$ be a morphism of $\mathcal{D}$.
There exists a distinguished triangle $(X, Y, Z, f, g, h)$ which
is unique up to (nonunique) isomorphism of triangles.
More precisely, given a second such distinguished triangle
$(X, Y, Z', f, g', h')$ there exists an isomorphism
$$
(1, 1, c) : (X, Y, Z, f, g, h) \longrightarrow (X, Y, Z', f, g', h')
$$
\end{lemma}
\begin{proof}
Existence by TR1. Uniqueness up to isomorphism by TR3 and
Lemma \ref{lemma-third-isomorphism-triangle}.
\end{proof}
\begin{lemma}
\label{lemma-uniqueness-third-arrow}
Let $\mathcal{D}$ be a pre-triangulated category. Let
$$
(a, b, c) : (X, Y, Z, f, g, h) \to (X', Y', Z', f', g', h')
$$
be a morphism of distinguished triangles. If one of the following
conditions holds
\begin{enumerate}
\item $\Hom(Y, X') = 0$,
\item $\Hom(Z, Y') = 0$,
\item $\Hom(X, X') = \Hom(Z, X') = 0$,
\item $\Hom(Z, X') = \Hom(Z, Z') = 0$, or
\item $\Hom(X[1], Z') = \Hom(Z, X') = 0$
\end{enumerate}
then $b$ is the unique morphism from $Y \to Y'$ such that
$(a, b, c)$ is a morphism of triangles.
\end{lemma}
\begin{proof}
If we have a second morphism of triangles $(a, b', c)$
then $(0, b - b', 0)$ is a morphism of triangles. Hence we
have to show: the only morphism $b : Y \to Y'$ such that
$X \to Y \to Y'$ and $Y \to Y' \to Z'$ are zero is $0$.
We will use Lemma \ref{lemma-representable-homological}
without further mention. In particular, condition (3) implies (1).
Given condition (1) if the composition $g' \circ b : Y \to Y' \to Z'$
is zero, then $b$ lifts to a morphism $Y \to X'$ which has to be zero.
This proves (1).
\medskip\noindent
The proof of (2) and (4) are dual to this argument.
\medskip\noindent
Assume (5). Consider the diagram
$$
\xymatrix{
X \ar[r]_f \ar[d]^0 &
Y \ar[r]_g \ar[d]^b &
Z \ar[r]_h \ar[d]^0 \ar@{..>}[ld]^\epsilon &
X[1] \ar[d]^0 \\
X' \ar[r]^{f'} &
Y' \ar[r]^{g'} &
Z' \ar[r]^{h'} &
X'[1]
}
$$
We may choose $\epsilon$ such that $b = \epsilon \circ g$.
Then $g' \circ \epsilon \circ g = 0$ which implies that
$g' \circ \epsilon = \delta \circ h$ for some
$\delta \in \Hom(X[1], Z')$. Since $\Hom(X[1], Z') = 0$
we conclude that $g' \circ \epsilon = 0$. Hence
$\epsilon = f' \circ \gamma$ for some $\gamma \in \Hom(Z, X')$.
Since $\Hom(Z, X') = 0$ we conclude that $\epsilon = 0$
and hence $b = 0$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-third-object-zero}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $f : X \to Y$ be a morphism of $\mathcal{D}$.
The following are equivalent
\begin{enumerate}
\item $f$ is an isomorphism,
\item $(X, Y, 0, f, 0, 0)$ is a distinguished triangle, and
\item for any distinguished triangle $(X, Y, Z, f, g, h)$ we have $Z = 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
By TR1 the triangle $(X, X, 0, 1, 0, 0)$ is distinguished.
Let $(X, Y, Z, f, g, h)$ be a distinguished triangle.
By TR3 there is a map of distinguished triangles
$(1, f, 0) : (X, X, 0) \to (X, Y, Z)$.
If $f$ is an isomorphism, then $(1, f, 0)$ is an isomorphism
of triangles by Lemma \ref{lemma-third-isomorphism-triangle}
and $Z = 0$. Conversely, if $Z = 0$, then $(1, f, 0)$ is an
isomorphism of triangles as well, hence $f$ is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-direct-sum-triangles}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $(X, Y, Z, f, g, h)$ and $(X', Y', Z', f', g', h')$ be triangles.
The following are equivalent
\begin{enumerate}
\item $(X \oplus X', Y \oplus Y', Z \oplus Z',
f \oplus f', g \oplus g', h \oplus h')$
is a distinguished triangle,
\item both $(X, Y, Z, f, g, h)$ and $(X', Y', Z', f', g', h')$ are
distinguished triangles.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (2). By TR1 we may choose a distinguished triangle
$(X \oplus X', Y \oplus Y', Q, f \oplus f', g'', h'')$.
By TR3 we can find morphisms of distinguished triangles
$(X, Y, Z, f, g, h) \to
(X \oplus X', Y \oplus Y', Q, f \oplus f', g'', h'')$
and
$(X', Y', Z', f', g', h') \to
(X \oplus X', Y \oplus Y', Q, f \oplus f', g'', h'')$.
Taking the direct sum of these morphisms
we obtain a morphism of triangles
$$
\xymatrix{
(X \oplus X', Y \oplus Y', Z \oplus Z',
f \oplus f', g \oplus g', h \oplus h')
\ar[d]^{(1, 1, c)} \\
(X \oplus X', Y \oplus Y', Q, f \oplus f', g'', h'').
}
$$
In the terminology of Remark \ref{remark-special-triangles}
this is a map of special triangles (because a direct sum of special
triangles is special) and we conclude
that $c$ is an isomorphism. Thus (1) holds.
\medskip\noindent
Assume (1). We will show that $(X, Y, Z, f, g, h)$ is a distinguished
triangle. First observe that $(X, Y, Z, f, g, h)$ is a special triangle
(terminology from Remark \ref{remark-special-triangles})
as a direct summand of the distinguished hence special
triangle $(X \oplus X', Y \oplus Y', Z \oplus Z',
f \oplus f', g \oplus g', h \oplus h')$. Using TR1 let
$(X, Y, Q, f, g'', h'')$ be a distinguished triangle. By TR3 there exists
a morphism of distinguished triangles
$(X \oplus X', Y \oplus Y', Z \oplus Z',
f \oplus f', g \oplus g', h \oplus h') \to (X, Y, Q, f, g'', h'')$.
Composing this with the inclusion map we get a morphism of triangles
$$
(1, 1, c) :
(X, Y, Z, f, g, h)
\longrightarrow
(X, Y, Q, f, g'', h'')
$$
By Remark \ref{remark-special-triangles}
we find that $c$ is an isomorphism and we conclude
that (2) holds.
\end{proof}
\begin{lemma}
\label{lemma-split}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $(X, Y, Z, f, g, h)$ be a distinguished triangle.
\begin{enumerate}
\item If $h = 0$, then there exists a right inverse $s : Z \to Y$ to $g$.
\item For any right inverse $s : Z \to Y$ of $g$ the map
$f \oplus s : X \oplus Z \to Y$ is an isomorphism.
\item For any objects $X', Z'$ of $\mathcal{D}$ the triangle
$(X', X' \oplus Z', Z', (1, 0), (0, 1), 0)$ is distinguished.
\end{enumerate}
\end{lemma}
\begin{proof}
To see (1) use that
$\Hom_\mathcal{D}(Z, Y) \to \Hom_\mathcal{D}(Z, Z) \to
\Hom_\mathcal{D}(Z, X[1])$
is exact by
Lemma \ref{lemma-representable-homological}.
By the same token, if $s$ is as in (2), then $h = 0$ and the sequence
$$
0 \to \Hom_\mathcal{D}(W, X) \to \Hom_\mathcal{D}(W, Y)
\to \Hom_\mathcal{D}(W, Z) \to 0
$$
is split exact (split by $s : Z \to Y$). Hence by Yoneda's lemma we
see that $X \oplus Z \to Y$ is an isomorphism. The last assertion follows
from TR1 and
Lemma \ref{lemma-direct-sum-triangles}.
\end{proof}
\begin{lemma}
\label{lemma-when-split}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $f : X \to Y$ be a morphism of $\mathcal{D}$.
The following are equivalent
\begin{enumerate}
\item $f$ has a kernel,
\item $f$ has a cokernel,
\item $f$ is the isomorphic to a composition
$K \oplus Z \to Z \to Z \oplus Q$ of a projection and coprojection
for some objects $K, Z, Q$ of $\mathcal{D}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Any morphism isomorphic to a map of the form
$X' \oplus Z \to Z \oplus Y'$ has both a kernel and a cokernel.
Hence (3) $\Rightarrow$ (1), (2).
Next we prove (1) $\Rightarrow$ (3).
Suppose first that $f : X \to Y$ is a monomorphism, i.e., its kernel is zero.
By TR1 there exists a distinguished triangle $(X, Y, Z, f, g, h)$.
By Lemma \ref{lemma-composition-zero} the composition
$f \circ h[-1] = 0$. As $f$ is a monomorphism we see that $h[-1] = 0$
and hence $h = 0$. Then
Lemma \ref{lemma-split}
implies that $Y = X \oplus Z$, i.e., we see that (3) holds.
Next, assume $f$ has a kernel $K$. As $K \to X$ is a monomorphism we
conclude $X = K \oplus X'$ and $f|_{X'} : X' \to Y$ is a monomorphism.
Hence $Y = X' \oplus Y'$ and we win.
The implication (2) $\Rightarrow$ (3) is dual to this.
\end{proof}
\begin{lemma}
\label{lemma-products-sums-shifts-triangles}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $I$ be a set.
\begin{enumerate}
\item Let $X_i$, $i \in I$ be a family of objects of $\mathcal{D}$.
\begin{enumerate}
\item If $\prod X_i$ exists, then $(\prod X_i)[1] = \prod X_i[1]$.
\item If $\bigoplus X_i$ exists, then $(\bigoplus X_i)[1] = \bigoplus X_i[1]$.
\end{enumerate}
\item Let $X_i \to Y_i \to Z_i \to X_i[1]$ be a family of distinguished
triangles of $\mathcal{D}$.
\begin{enumerate}
\item If $\prod X_i$, $\prod Y_i$, $\prod Z_i$ exist, then
$\prod X_i \to \prod Y_i \to \prod Z_i \to \prod X_i[1]$
is a distinguished triangle.
\item If $\bigoplus X_i$, $\bigoplus Y_i$,
$\bigoplus Z_i$ exist, then
$\bigoplus X_i \to \bigoplus Y_i \to \bigoplus Z_i \to \bigoplus X_i[1]$
is a distinguished triangle.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) is true because $[1]$ is an autoequivalence of $\mathcal{D}$
and because direct sums and products are defined in terms of the
category structure. Let us prove (2)(a). Choose a distinguished triangle
$\prod X_i \to \prod Y_i \to Z \to \prod X_i[1]$. For each $j$ we can
use TR3 to choose a morphism $p_j : Z \to Z_j$
fitting into a morphism of distinguished
triangles with the projection maps $\prod X_i \to X_j$ and $\prod Y_i \to Y_j$.
Using the definition of products we obtain a map
$\prod p_i : Z \to \prod Z_i$ fitting into a morphism
of triangles from the distinguished triangle to the triangle
made out of the products. Observe that the ``product'' triangle
$\prod X_i \to \prod Y_i \to \prod Z_i \to \prod X_i[1]$
is special in the terminology of Remark \ref{remark-special-triangles}
because products of exact sequences of abelian groups are exact.
Hence Remark \ref{remark-special-triangles} shows that
the morphism of triangles is an isomorphism and we conclude by TR1.
The proof of (2)(b) is dual.
\end{proof}
\begin{lemma}
\label{lemma-projectors-have-images-triangulated}
Let $\mathcal{D}$ be a pre-triangulated category.
If $\mathcal{D}$ has countable products, then $\mathcal{D}$
is Karoubian.
If $\mathcal{D}$ has countable coproducts, then $\mathcal{D}$
is Karoubian.
\end{lemma}
\begin{proof}
Assume $\mathcal{D}$ has countable products. By
Homology, Lemma \ref{homology-lemma-projectors-have-images}
it suffices to check that morphisms which have a right inverse have kernels.
Any morphism which has a right inverse is an epimorphism, hence
has a kernel by
Lemma \ref{lemma-when-split}.
The second statement is dual to the first.
\end{proof}
\noindent
The following lemma makes it slightly easier to prove that a
pre-triangulated category is triangulated.
\begin{lemma}
\label{lemma-easier-axiom-four}
Let $\mathcal{D}$ be a pre-triangulated category.
In order to prove TR4 it suffices to show that given
any pair of composable morphisms
$f : X \to Y$ and $g : Y \to Z$ there exist
\begin{enumerate}
\item isomorphisms $i : X' \to X$, $j : Y' \to Y$ and
$k : Z' \to Z$, and then setting $f' = j^{-1}fi : X' \to Y'$ and
$g' = k^{-1}gj : Y' \to Z'$ there exist
\item distinguished triangles
$(X', Y', Q_1, f', p_1, d_1)$,
$(X', Z', Q_2, g' \circ f', p_2, d_2)$
and
$(Y', Z', Q_3, g', p_3, d_3)$,
such that the assertion of TR4 holds.
\end{enumerate}
\end{lemma}
\begin{proof}
The replacement of $X, Y, Z$ by $X', Y', Z'$ is harmless by our
definition of distinguished triangles and their isomorphisms.
The lemma follows from the fact that the distinguished triangles
$(X', Y', Q_1, f', p_1, d_1)$,
$(X', Z', Q_2, g' \circ f', p_2, d_2)$
and
$(Y', Z', Q_3, g', p_3, d_3)$
are unique up to isomorphism by
Lemma \ref{lemma-cone-triangle-unique-isomorphism}.
\end{proof}
\begin{lemma}
\label{lemma-triangulated-subcategory}
Let $\mathcal{D}$ be a pre-triangulated category.
Assume that $\mathcal{D}'$ is an additive full subcategory of $\mathcal{D}$.
The following are equivalent
\begin{enumerate}
\item there exists a set of triangles $\mathcal{T}'$ such that
$(\mathcal{D}', \mathcal{T}')$ is a pre-triangulated subcategory
of $\mathcal{D}$,
\item $\mathcal{D}'$ is preserved under $[1]$ and
$[1] : \mathcal{D}' \to \mathcal{D}'$ is an auto-equivalence and
given any morphism $f : X \to Y$ in $\mathcal{D}'$ there exists
a distinguished triangle $(X, Y, Z, f, g, h)$ in $\mathcal{D}$
such that $Z$ is isomorphic to an object of $\mathcal{D}'$.
\end{enumerate}
In this case $\mathcal{T}'$ as in (1) is the set of distinguished triangles
$(X, Y, Z, f, g, h)$ of $\mathcal{D}$ such that
$X, Y, Z \in \Ob(\mathcal{D}')$. Finally, if $\mathcal{D}$
is a triangulated category, then (1) and (2) are also equivalent to
\begin{enumerate}
\item[(3)] $\mathcal{D}'$ is a triangulated subcategory.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-exact-functor-additive}
An exact functor of pre-triangulated categories is additive.
\end{lemma}
\begin{proof}
Let $F : \mathcal{D} \to \mathcal{D}'$ be an exact functor of
pre-triangulated categories. Since
$(0, 0, 0, 1_0, 1_0, 0)$ is a distinguished triangle of $\mathcal{D}$
the triangle
$$
(F(0), F(0), F(0), 1_{F(0)}, 1_{F(0)}, F(0))
$$
is distinguished in $\mathcal{D}'$.
This implies that $1_{F(0)} \circ 1_{F(0)}$ is zero, see
Lemma \ref{lemma-composition-zero}.
Hence $F(0)$ is the zero object of $\mathcal{D}'$. This also implies
that $F$ applied to any zero morphism is zero (since a morphism in
an additive category is zero if and only if it factors through the
zero object). Next, using that
$(X, X \oplus Y, Y, (1, 0), (0, 1), 0)$ is a distinguished triangle by
Lemma \ref{lemma-split} part (3), we see that
$(F(X), F(X \oplus Y), F(Y), F(1, 0), F(0, 1), 0)$ is
one too. This implies that the map $F(X) \oplus F(Y) \to F(X \oplus Y)$
is an isomorphism by Lemma \ref{lemma-split} part (2). To finish we apply
Homology, Lemma \ref{homology-lemma-additive-functor}.
\end{proof}
\begin{lemma}
\label{lemma-exact-equivalence}
Let $F : \mathcal{D} \to \mathcal{D}'$ be a fully faithful exact functor
of pre-triangulated categories. Then a triangle $(X, Y, Z, f, g, h)$
of $\mathcal{D}$ is distinguished if and only if
$(F(X), F(Y), F(Z), F(f), F(g), F(h))$ is distinguished in $\mathcal{D}'$.
\end{lemma}
\begin{proof}
The ``only if'' part is clear. Assume $(F(X), F(Y), F(Z))$ is
distinguished in $\mathcal{D}'$. Pick a distinguished triangle
$(X, Y, Z', f, g', h')$ in $\mathcal{D}$. By
Lemma \ref{lemma-cone-triangle-unique-isomorphism}
there exists an isomorphism of triangles
$$
(1, 1, c') : (F(X), F(Y), F(Z)) \longrightarrow (F(X), F(Y), F(Z')).
$$
Since $F$ is fully faithful, there exists a morphism $c : Z \to Z'$
such that $F(c) = c'$. Then $(1, 1, c)$ is an isomorphism between
$(X, Y, Z)$ and $(X, Y, Z')$. Hence $(X, Y, Z)$ is distinguished
by TR1.
\end{proof}
\begin{lemma}
\label{lemma-composition-exact}
Let $\mathcal{D}, \mathcal{D}', \mathcal{D}''$ be pre-triangulated categories.
Let $F : \mathcal{D} \to \mathcal{D}'$ and
$F' : \mathcal{D}' \to \mathcal{D}''$ be exact functors.
Then $F' \circ F$ is an exact functor.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-exact-compose-homological-functor}
Let $\mathcal{D}$ be a pre-triangulated category.
Let $\mathcal{A}$ be an abelian category.
Let $H : \mathcal{D} \to \mathcal{A}$ be a homological functor.
\begin{enumerate}
\item Let $\mathcal{D}'$ be a pre-triangulated category.
Let $F : \mathcal{D}' \to \mathcal{D}$ be an exact functor.
Then the composition $H \circ F$ is a homological functor as well.
\item Let $\mathcal{A}'$ be an abelian category. Let
$G : \mathcal{A} \to \mathcal{A}'$ be an exact functor.
Then $G \circ H$ is a homological functor as well.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-exact-compose-delta-functor}
Let $\mathcal{D}$ be a triangulated category.
Let $\mathcal{A}$ be an abelian category.
Let $G : \mathcal{A} \to \mathcal{D}$ be a $\delta$-functor.
\begin{enumerate}
\item Let $\mathcal{D}'$ be a triangulated category.
Let $F : \mathcal{D} \to \mathcal{D}'$ be an exact functor.
Then the composition $F \circ G$ is a $\delta$-functor as well.
\item Let $\mathcal{A}'$ be an abelian category. Let
$H : \mathcal{A}' \to \mathcal{A}$ be an exact functor.
Then $G \circ H$ is a $\delta$-functor as well.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-compose-delta-functor-homological}
Let $\mathcal{D}$ be a triangulated category.
Let $\mathcal{A}$ and $\mathcal{B}$ be abelian categories.
Let $G : \mathcal{A} \to \mathcal{D}$ be a $\delta$-functor.
Let $H : \mathcal{D} \to \mathcal{B}$ be a homological functor.
Assume that $H^{-1}(G(A)) = 0$ for all $A$ in $\mathcal{A}$.
Then the collection
$$
\{H^n \circ G, H^n(\delta_{A \to B \to C})\}_{n \geq 0}
$$
is a $\delta$-functor from $\mathcal{A} \to \mathcal{B}$, see
Homology, Definition \ref{homology-definition-cohomological-delta-functor}.