Skip to content

Latest commit

 

History

History
424 lines (307 loc) · 11.2 KB

development.md

File metadata and controls

424 lines (307 loc) · 11.2 KB

Development guide

This guide provides comprehensive information for developers working on the CodeGate project.

Project overview

CodeGate is a configurable generative AI gateway designed to protect developers from potential AI-related security risks. Key features include:

  • Secrets exfiltration prevention
  • Secure coding recommendations
  • Prevention of AI recommending deprecated/malicious libraries
  • Modular system prompts configuration
  • Multiple AI provider support with configurable endpoints

Development setup

Prerequisites

Initial setup

  1. Clone the repository:

    git clone https://github.com/stacklok/codegate.git
    cd codegate
  2. Install Poetry following the official installation guide

  3. Install project dependencies:

    poetry install --with dev

Dashboard CodeGate UI

Setting up local development environment

Clone the repository

   git clone https://github.com/stacklok/codegate-ui
   cd codegate-ui

To install all dependencies for your local development environment, run

npm install

Running the development server

Run the development server using:

npm run dev

Build production

Run the build command:

npm run build

Running production build

Run the production build command:

npm run preview

Project structure

codegate/
├── pyproject.toml    # Project configuration and dependencies
├── poetry.lock      # Lock file (committed to version control)
├── prompts/         # System prompts configuration
│   └── default.yaml # Default system prompts
├── src/
│   └── codegate/    # Source code
│       ├── __init__.py
│       ├── cli.py           # Command-line interface
│       ├── config.py        # Configuration management
│       ├── exceptions.py    # Shared exceptions
│       ├── codegate_logging.py       # Logging setup
│       ├── prompts.py       # Prompts management
│       ├── server.py        # Main server implementation
│       └── providers/       # External service providers
│           ├── anthropic/   # Anthropic provider implementation
│           ├── openai/      # OpenAI provider implementation
│           ├── vllm/        # vLLM provider implementation
│           └── base.py      # Base provider interface
├── tests/           # Test files
└── docs/            # Documentation

Development workflow

1. Environment management

Poetry commands for managing your development environment:

  • poetry install: Install project dependencies
  • poetry add package-name: Add a new package dependency
  • poetry add --group dev package-name: Add a development dependency
  • poetry remove package-name: Remove a package
  • poetry update: Update dependencies to their latest versions
  • poetry show: List all installed packages
  • poetry env info: Show information about the virtual environment

2. Code style and quality

The project uses several tools to maintain code quality:

  • Black for code formatting:

    poetry run black .
  • Ruff for linting:

    poetry run ruff check .
  • Bandit for security checks:

    poetry run bandit -r src/

3. Testing

Unit Tests

To run the unit test suite with coverage:

poetry run pytest

Tests are located in the tests/ directory and follow the same structure as the source code.

Integration Tests

To run the integration tests, create a .env file in the repo root directory and add the following properties to it:

ENV_OPENAI_KEY=<YOUR_KEY>
ENV_VLLM_KEY=<YOUR_KEY>
ENV_ANTHROPIC_KEY=<YOUR_KEY>

Next, run import_packages to ensure integration test data is created:

poetry run python scripts/import_packages.py

Next, start the CodeGate server:

poetry run codegate serve --log-level DEBUG --log-format TEXT

Then the integration tests can be executed by running:

poetry run python tests/integration/integration_tests.py

You can include additional properties to specify test scope and other information. For instance, to execute the tests for Copilot providers, for instance, run:

CODEGATE_PROVIDERS=copilot CA_CERT_FILE=./codegate_volume/certs/ca.crt poetry run python tests/integration/integration_tests.py

4. Make commands

The project includes a Makefile for common development tasks:

  • make install: install all dependencies
  • make format: format code using black and ruff
  • make lint: run linting checks
  • make test: run tests with coverage
  • make security: run security checks
  • make build: build distribution packages
  • make all: run all checks and build (recommended before committing)

🐳 Docker deployment

Build the image

make image-build

Run the container

# Basic usage with local image
docker run -p 8989:8989 -p 9090:9090 codegate:latest

# With pre-built pulled image
docker pull ghcr.io/stacklok/codegate:latest
docker run --name codegate -d -p 8989:8989 -p 9090:9090 ghcr.io/stacklok/codegate:latest

# It will mount a volume to /app/codegate_volume
# The directory supports storing Llama CPP models under subdirectory /models
# A sqlite DB with the messages and alerts is stored under the subdirectory /db
docker run --name codegate -d -v /path/to/volume:/app/codegate_volume -p 8989:8989 -p 9090:9090 ghcr.io/stacklok/codegate:latest

Exposed parameters

  • CODEGATE_VLLM_URL: URL for the inference engine (defaults to https://inference.codegate.ai)
  • CODEGATE_OPENAI_URL: URL for OpenAI inference engine (defaults to https://api.openai.com/v1)
  • CODEGATE_ANTHROPIC_URL: URL for Anthropic inference engine (defaults to https://api.anthropic.com/v1)
  • CODEGATE_OLLAMA_URL: URL for OLlama inference engine (defaults to http://localhost:11434/api)
  • CODEGATE_APP_LOG_LEVEL: Level of debug desired when running the codegate server (defaults to WARNING, can be ERROR/WARNING/INFO/DEBUG)
  • CODEGATE_LOG_FORMAT: Type of log formatting desired when running the codegate server (default to TEXT, can be JSON/TEXT)
docker run -p 8989:8989 -p 9090:9090 -e CODEGATE_OLLAMA_URL=http://1.2.3.4:11434/api ghcr.io/stacklok/codegate:latest

Configuration system

CodeGate uses a hierarchical configuration system with the following priority (highest to lowest):

  1. CLI arguments
  2. Environment variables
  3. Config file (YAML)
  4. Default values (including default prompts)

Configuration options

  • Port: server port (default: 8989)
  • Host: server host (default: "localhost")
  • Log level: logging verbosity level (ERROR|WARNING|INFO|DEBUG)
  • Log format: log format (JSON|TEXT)
  • Prompts: system prompts configuration
  • Provider URLs: AI provider endpoint configuration

See Configuration system for detailed information.

Working with providers

CodeGate supports multiple AI providers through a modular provider system.

Available providers

  1. vLLM provider

    • Default URL: http://localhost:8000
    • Supports OpenAI-compatible APIs
    • Automatically adds /v1 path to base URL
    • Model names are prefixed with hosted_vllm/
  2. OpenAI provider

    • Default URL: https://api.openai.com/v1
    • Standard OpenAI API implementation
  3. Anthropic provider

    • Default URL: https://api.anthropic.com/v1
    • Anthropic Claude API implementation
  4. Ollama provider

    • Default URL: http://localhost:11434
    • Endpoints:
      • Native Ollama API: /ollama/api/chat
      • OpenAI-compatible: /ollama/chat/completions

Configuring providers

Provider URLs can be configured through:

  1. Config file (config.yaml):

    provider_urls:
      vllm: "https://vllm.example.com"
      openai: "https://api.openai.com/v1"
      anthropic: "https://api.anthropic.com/v1"
      ollama: "http://localhost:11434" # /api path added automatically
  2. Environment variables:

    export CODEGATE_PROVIDER_VLLM_URL=https://vllm.example.com
    export CODEGATE_PROVIDER_OPENAI_URL=https://api.openai.com/v1
    export CODEGATE_PROVIDER_ANTHROPIC_URL=https://api.anthropic.com/v1
    export CODEGATE_PROVIDER_OLLAMA_URL=http://localhost:11434
  3. CLI flags:

    codegate serve --vllm-url https://vllm.example.com --ollama-url http://localhost:11434

Implementing new providers

To add a new provider:

  1. Create a new directory in src/codegate/providers/
  2. Implement required components:
    • provider.py: Main provider class extending BaseProvider
    • adapter.py: Input/output normalizers
    • __init__.py: Export provider class

Example structure:

from codegate.providers.base import BaseProvider

class NewProvider(BaseProvider):
    def __init__(self, ...):
        super().__init__(
            InputNormalizer(),
            OutputNormalizer(),
            completion_handler,
            pipeline_processor,
            fim_pipeline_processor
        )

    @property
    def provider_route_name(self) -> str:
        return "provider_name"

    def _setup_routes(self):
        # Implement route setup
        pass

Working with prompts

Default prompts

Default prompts are stored in prompts/default.yaml. These prompts are loaded automatically when no other prompts are specified.

Creating custom prompts

  1. Create a new YAML file following the format:

    prompt_name: "Prompt text content"
    another_prompt: "More prompt text"
  2. Use the prompts file:

    # Via CLI
    codegate serve --prompts my-prompts.yaml
    
    # Via config.yaml
    prompts: "path/to/prompts.yaml"
    
    # Via environment
    export CODEGATE_PROMPTS_FILE=path/to/prompts.yaml

Testing prompts

  1. View loaded prompts:

    # Show default prompts
    codegate show-prompts
    
    # Show custom prompts
    codegate show-prompts --prompts my-prompts.yaml
  2. Write tests for prompt functionality:

    def test_custom_prompts():
        config = Config.load(prompts_path="path/to/test/prompts.yaml")
        assert config.prompts.my_prompt == "Expected prompt text"

CLI interface

The main command-line interface is implemented in cli.py. Basic usage:

# Start server with default settings
codegate serve

# Start with custom configuration
codegate serve --port 8989 --host localhost --log-level DEBUG

# Start with custom prompts
codegate serve --prompts my-prompts.yaml

# Start with custom provider URL
codegate serve --vllm-url https://vllm.example.com

See CLI commands and flags for detailed command information.