forked from alokrajiv/Realtime-Video-Face-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
200 lines (190 loc) · 7.45 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <iterator>
#include <vector>
#include <string>
#include <map>
#include <cassert>
#include <opencv2/opencv.hpp>
#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
using namespace cv;
using namespace std;
class CSVRow {
public:
string const& operator[](size_t index) const
{
return m_data[index];
}
size_t size() const
{
return m_data.size();
}
void readNextRow(istream& str)
{
string line;
getline(str, line);
stringstream lineStream(line);
string cell;
m_data.clear();
while (getline(lineStream, cell, ';')) {
m_data.push_back(cell);
}
}
friend istream& operator>>(istream& str, CSVRow& data)
{
data.readNextRow(str);
return str;
}
private:
vector<string> m_data;
};
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels)
{
char separator = ';';
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if (!path.empty() && !classlabel.empty()) {
Mat m = imread(path, 1);
Mat m2;
cvtColor(m, m2, CV_BGR2GRAY);
images.push_back(m2);
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char* argv[])
{
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc != 5) {
cout << argc << endl;
cout << "usage: " << argv[0] << " </path/to/haar_cascade> </path/to/csv.ext> </path/to/device id>" << endl;
cout << "\t </path/to/haar_cascade> -- Path to the Haar Cascade for face detection." << endl;
cout << "\t </path/to/csv.ext> -- Path to the CSV file with the face database." << endl;
cout << "\t </path/to/csv.ext> -- Path to the CSV file with the id to names." << endl;
cout << "\t <device id> -- The webcam device id to grab frames from." << endl;
exit(1);
}
// Get the path to your CSV:
string fn_haar = string(argv[1]);
string fn_csv = string(argv[2]);
string fn_csv_names = string(argv[3]);
int deviceId = atoi(argv[4]);
// These vectors hold the images and corresponding labels:
vector<Mat> images;
vector<int> labels;
// Read in the data (fails if no valid input filename is given, but you'll get an error message):
try {
read_csv(fn_csv, images, labels);
}
catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
ifstream file(fn_csv_names);
CSVRow row;
map<int, string> label_name_map;
while (file >> row) {
label_name_map[atoi(row[0].c_str())] = row[1];
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size AND we need to reshape incoming faces to this size:
int im_width = images[0].cols;
int im_height = images[0].rows;
// Create a FaceRecognizer and train it on the given images:
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
// That's it for learning the Face Recognition model. You now
// need to create the classifier for the task of Face Detection.
// We are going to use the haar cascade you have specified in the
// command line arguments:
//
CascadeClassifier haar_cascade;
haar_cascade.load(fn_haar);
// Get a handle to the Video device:
VideoCapture video_stream(deviceId);
//video_stream.open("http://192.168.20.102:8080/video?x.mjpeg");
// Check if we can use this device at all:
if (!video_stream.isOpened()) {
cerr << "VideoStream or Capture Device ID " << deviceId << "cannot be opened." << endl;
return -1;
}
// Holds the current frame from the Video device:
Mat frame;
for (;;) {
video_stream >> frame;
// Clone the current frame:
Mat original = frame.clone();
// Convert the current frame to grayscale:
Mat gray;
cvtColor(original, gray, CV_BGR2GRAY);
// Find the faces in the frame:
vector<Rect_<int> > faces;
haar_cascade.detectMultiScale(gray, faces);
// At this point you have the position of the faces in
// faces. Now we'll get the faces, make a prediction and
// annotate it in the video. Cool or what?
for (int i = 0; i < faces.size(); i++) {
// Process face by face:
Rect face_i = faces[i];
// Crop the face from the image. So simple with OpenCV C++:
Mat face = gray(face_i);
// Resizing the face is necessary for Eigenfaces and Fisherfaces. You can easily
// verify this, by reading through the face recognition tutorial coming with OpenCV.
// Resizing IS NOT NEEDED for Local Binary Patterns Histograms, so preparing the
// input data really depends on the algorithm used.
//
// I strongly encourage you to play around with the algorithms. See which work best
// in your scenario, LBPH should always be a contender for robust face recognition.
//
// Since I am showing the Fisherfaces algorithm here, I also show how to resize the
// face you have just found:
Mat face_resized;
cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC);
// Now perform the prediction, see how easy that is:
// Some variables for the predicted label and associated confidence (e.g. distance):
int predicted_label = -1;
double predicted_confidence = 0.0;
model->predict(face_resized, predicted_label, predicted_confidence);
// And finally write all we've found out to the original image!
// First of all draw a green rectangle around the detected face:
rectangle(original, face_i, CV_RGB(0, 255, 0), 1);
// Create the text we will annotate the box with:
string s = "UKNOWN";
if (label_name_map.find(predicted_label) != label_name_map.end()) {
s = label_name_map[predicted_label];
}
string box_text = format("%s with confidence %f", s.c_str(), predicted_confidence);
// Calculate the position for annotated text (make sure we don't
// put illegal values in there):
int pos_x = std::max(face_i.tl().x - 10, 0);
int pos_y = std::max(face_i.tl().y - 10, 0);
// And now put it into the image:
putText(original, box_text, Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.0, CV_RGB(0, 255, 0), 2.0);
}
// Show the result:
imshow("face_recognizer", original);
// And display it:
char key = (char)waitKey(20);
// Exit this loop on escape:
if (key == 27)
break;
}
return 0;
}