-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrarnn.py
440 lines (347 loc) · 15.5 KB
/
rarnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchtext.vocab import load_word_vectors
from nalgene.generate import *
import somata
import sconce
import traceback
USE_CUDA = False
SHOW_ATTENTION = False
MAX_LENGTH = 50
input_size = 100
hidden_size = 100
learning_rate = 1e-4
weight_decay = 1e-6
n_epochs = 5000
def tokenize_sentence(s):
s = s.lower()
s = re.sub(r'(\d)', r'\1 ', s)
s = re.sub(r'[^a-z0-9 \']', ' ', s)
s = re.sub(r'\s+', ' ', s).strip()
return s.split(' ')
class GloVeLang:
def __init__(self, size):
self.size = size
base_dir = '.'
glove_dict, glove_arr, glove_size = load_word_vectors(base_dir, 'glove.twitter.27B', size)
self.glove_dict = glove_dict
self.glove_arr = glove_arr
def __str__(self):
return "%s(size = %d)" % (self.__class__.__name__, self.size)
def vector_from_word(self, word):
if word in self.glove_dict:
return self.glove_arr[self.glove_dict[word]]
else:
return torch.zeros(self.size)
def tokens_to_tensor(self, words):
tensor = torch.zeros(len(words), 1, self.size)
for wi in range(len(words)):
word = words[wi]
tensor[wi][0] = self.vector_from_word(word)
return tensor
input_lang = GloVeLang(input_size)
def descend(node, fn, child_type='phrase', returns=None):
if returns is None: returns = []
returned = fn(node)
returns.append(returned)
for child in node.children:
if (child_type is None) or (child.type == child_type):
descend(child, fn, child_type, returns)
return returns
def ascend(node, fn):
if node.parent is None:
return fn(node)
else:
return ascend(node.parent, fn)
# Getting input and target data for nodes
def words_for_position(words, position):
if position is None:
return words
start, end, length = position
return words[start : end + 1]
def relative_position(node, parent):
if parent.position is None:
return node.position
return node.position[0] - parent.position[0], node.position[1] - parent.position[0], node.position[2]
def data_for_node(flat, node):
words = [child.key for child in flat.children]
inputs = words_for_position(words, node.position)
keys = [child.key for child in node.children]
positions = [relative_position(child, node) for child in node.children]
return node.key, inputs, list(zip(keys, positions))
# Creating tensors for input and target data
def tokens_to_tensor(tokens, source_tokens, append_eos=True):
indexes = []
for token in tokens:
indexes.append(source_tokens.index(token))
if append_eos:
indexes.append(0)
return torch.LongTensor(indexes)
def ranges_to_tensor(ranges, seq_len):
ranges_tensor = torch.zeros(len(ranges), seq_len)
for r in range(len(ranges)):
start, end, _ = ranges[r]
ranges_tensor[r, start:end+1] = 1
return ranges_tensor
# Model
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, n_layers=1):
super(Encoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.embedding = nn.Linear(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=True)
def forward(self, context_input, word_inputs):
# TODO: Incorporate context input
# TODO: Batching
seq_len = word_inputs.size(0)
batch_size = word_inputs.size(1)
embedded = self.embedding(word_inputs.view(seq_len * batch_size, -1)) # Process seq x batch at once
output = embedded.view(seq_len, batch_size, -1) # Resize back to seq x batch for RNN
outputs, hidden = self.gru(output)
outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:] # Sum bidirectional outputs
return outputs, hidden
class Attention(nn.Module):
def __init__(self):
super(Attention, self).__init__()
def forward(self, hidden, encoder_outputs):
seq_len = len(encoder_outputs)
# Create variable to store attention energies
attention_energies = Variable(torch.zeros(seq_len)) # B x 1 x S
if USE_CUDA: attention_energies = attention_energies.cuda()
# Calculate energies for each encoder output
for i in range(seq_len):
attention_energies[i] = hidden.dot(encoder_outputs[i])
# Squeeze to range 0 to 1, resize to 1 x 1 x seq_len
return F.sigmoid(attention_energies).unsqueeze(0).unsqueeze(0)
class Decoder(nn.Module):
def __init__(self, hidden_size, output_size, n_layers=1, dropout=0.05):
super(Decoder, self).__init__()
# Keep parameters for reference
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout = dropout
# Define layers
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size * 2, hidden_size, n_layers, dropout=dropout)
self.out = nn.Linear(hidden_size * 2, output_size)
# Attention module
self.attention = Attention()
def forward(self, context_input, word_input, last_hidden, encoder_outputs):
# Note: we run this one step at a time
# TODO: Batching
# Get the embedding of the current input word (last output word)
word_embedded = self.embedding(word_input).view(1, 1, -1) # S=1 x B x N
# Combine context and embedded word, through RNN
rnn_input = torch.cat((context_input.unsqueeze(0), word_embedded), 2)
rnn_output, hidden = self.gru(rnn_input, last_hidden)
# Calculate attention from current RNN state and all encoder outputs; apply to encoder outputs
attention_weights = self.attention(rnn_output.squeeze(0), encoder_outputs)
context = attention_weights.bmm(encoder_outputs.transpose(0, 1)) # B x 1 x N
# Final output layer (next word prediction) using the RNN hidden state and context vector
rnn_output = rnn_output.squeeze(0) # S=1 x B x N -> B x N
context = context.squeeze(1) # B x S=1 x N -> B x N
output = F.log_softmax(self.out(torch.cat((rnn_output, context), 1)))
# Return final output, hidden state, and attention weights (for visualization)
return output, hidden, attention_weights
class RARNN(nn.Module):
def __init__(self, input_size, output_tokens, hidden_size):
super(RARNN, self).__init__()
self.input_size = input_size
self.output_tokens = output_tokens
self.output_size = len(output_tokens)
self.hidden_size = hidden_size
self.embedding = nn.Embedding(self.output_size, hidden_size)
self.encoder = Encoder(self.input_size, hidden_size)
self.decoder = Decoder(hidden_size, self.output_size)
def forward(self, context_input, word_inputs, word_targets=None):
# Get embedding for context input
context_embedded = self.embedding(context_input)
input_len = word_inputs.size(0)
target_len = word_targets.size(0) if word_targets is not None else MAX_LENGTH
# Run through encoder
encoder_outputs, encoder_hidden = self.encoder(context_embedded, word_inputs)
decoder_hidden = encoder_hidden # Use encoder's last hidden state
decoder_input = Variable(torch.LongTensor([0])) # EOS/SOS token
if USE_CUDA:
decoder_input = decoder_input.cuda()
# Variables to store decoder and attention outputs
decoder_outputs = Variable(torch.zeros(target_len, self.output_size))
decoder_attentions = Variable(torch.zeros(target_len, input_len))
if USE_CUDA:
decoder_outputs = decoder_outputs.cuda()
decoder_attentions = decoder_attentions.cuda()
# Run through decoder
for i in range(target_len):
decoder_output, decoder_hidden, decoder_attention = self.decoder(context_embedded, decoder_input, decoder_hidden, encoder_outputs)
decoder_outputs[i] = decoder_output
decoder_attentions[i] = decoder_attention
# Teacher forcing with known targets, if provided
if word_targets is not None:
decoder_input = word_targets[i]
# Sample with last outputs
else:
max_index = decoder_output.topk(1)[1].data[0][0]
decoder_input = Variable(torch.LongTensor([max_index]))
if USE_CUDA:
decoder_input = decoder_input.cuda()
if max_index == 0: break # EOS
# Slice outputs
if word_targets is None:
print('i', i)
if i > 0:
decoder_outputs = decoder_outputs[:i]
decoder_attentions = decoder_attentions[:i]
else:
decoder_outputs = Variable(torch.Tensor())
decoder_attentions = Variable(torch.Tensor())
elif target_len > 1:
decoder_attentions = decoder_attentions[:-1] # Ignore attentions on EOS
return decoder_outputs, decoder_attentions
# Training
def train(flat, node):
context, inputs, targets = data_for_node(flat, node)
# Turn inputs into tensors
context_var = tokens_to_tensor([context], rarnn.output_tokens, False)
context_var = Variable(context_var)
inputs_var = input_lang.tokens_to_tensor(inputs) # seq x batch x size
inputs_var = Variable(inputs_var)
target_tokens = [target_token for target_token, _ in targets]
target_ranges = [target_range for _, target_range in targets]
target_tokens_var = tokens_to_tensor(target_tokens, rarnn.output_tokens)
target_tokens_var = Variable(target_tokens_var)
target_ranges_var = ranges_to_tensor(target_ranges, len(inputs))
target_ranges_var = Variable(target_ranges_var)
# Run through model
decoder_outputs, attention_outputs = rarnn(context_var, inputs_var, target_tokens_var)
# Loss calculation and backprop
optimizer.zero_grad()
decoder_loss = decoder_criterion(decoder_outputs, target_tokens_var)
if len(targets) > 0:
attention_loss = attention_criterion(attention_outputs, target_ranges_var)
else:
attention_loss = 0
total_loss = decoder_loss + attention_loss
total_loss.backward()
optimizer.step()
return total_loss.data[0]
# Evaluating
def evaluate(context, inputs, node=None):
if node == None:
node = Node('parsed')
node.position = (0, len(inputs))
# Turn data into tensors
context_var = tokens_to_tensor([context], rarnn.output_tokens, False)
context_var = Variable(context_var)
inputs_var = input_lang.tokens_to_tensor(inputs) # seq x batch x size
inputs_var = Variable(inputs_var)
# Run through RARNN
print('context', context, 'inputs', inputs)
decoder_outputs, attention_outputs = rarnn(context_var, inputs_var)
# Given the decoder and attention outputs, gather contexts and inputs for sub-phrases
# Use attention values > 0.5 to select words for next input sequence
next_contexts = []
next_inputs = []
next_positions = []
for i in range(len(decoder_outputs)):
max_value, max_index = decoder_outputs[i].topk(1)
max_index = max_index.data[0]
next_contexts.append(rarnn.output_tokens[max_index]) # Get decoder output token
a = attention_outputs[i]
next_input = []
next_position = []
for t in range(len(a)):
at = a[t].data[0]
if at > 0.5:
if len(next_position) == 0: # Start position
next_position.append(t)
next_input.append(inputs[t])
else:
if len(next_position) == 1: # End position
next_position.append(t - 1)
if len(next_position) == 1: # End position
next_position.append(t)
next_inputs.append(next_input)
if len(next_position) == 2:
next_position = (next_position[0] + node.position[0], next_position[1] + node.position[0])
next_positions.append(next_position)
evaluated = list(zip(next_contexts, next_inputs, next_positions))
# Print decoded outputs
print('\n(evaluate) %s %s -> %s' % (context, ' '.join(inputs), next_contexts))
# Plot attention outputs
if SHOW_ATTENTION:
fig = plt.figure(figsize=(len(inputs) / 3, 99))
sub = fig.add_subplot(111)
sub.matshow(attention_outputs.data.squeeze(1).numpy(), vmin=0, vmax=1, cmap='hot')
plt.show(); plt.close()
for context, inputs, position in evaluated:
print('evaluated', inputs, position)
# Add a node for parsed sub-phrases and values
sub_node = Node(context)
sub_node.position = position
node.add(sub_node)
# Recursively evaluate sub-phrases
if context[0] == '%':
if len(inputs) > 0:
evaluate(context, inputs, sub_node)
else:
print("WARNING: Empty inputs")
# Or add words directly to value node
elif context[0] == '$':
sub_node.add(' '.join(inputs))
return node
def evaluate_and_print(context, inputs):
evaluated = evaluate(context, inputs)
print(' '.join(inputs))
print(evaluated)
return evaluated
def parse(s, cb):
words = tokenize_sentence(s)
try:
evaluated = evaluate_and_print('%', words)
cb({'words': words, 'parsed': evaluated.to_json()})
except Exception:
print("Error evaluating")
traceback.print_exc()
cb({'error': "Failed to evaluate"})
if sys.argv[1] == 'train':
# Build input and output vocabularies
parsed = parse_file('.', 'grammar.nlg')
parsed.map_leaves(tokenizeLeaf)
output_tokens = [child.key for child in parsed.children if child.type in ['phrase', 'value', 'ref']]
output_tokens = ['EOS'] + output_tokens
print(output_tokens)
# Initialize model, optimizer, criterions
rarnn = RARNN(input_size, output_tokens, hidden_size)
optimizer = torch.optim.Adam(rarnn.parameters(), lr=learning_rate, weight_decay=weight_decay)
decoder_criterion = nn.NLLLoss()
attention_criterion = nn.MSELoss(size_average=False)
job = sconce.Job('rarnn')
job.plot_every = 20
job.log_every = 100
# Train
try:
for i in range(n_epochs):
walked_flat, walked_tree = walk_tree(parsed, parsed['%'], None)
def _train(node): return train(walked_flat, node)
ds = descend(walked_tree, _train)
d = sum(ds) / len(ds)
job.record(i, d)
except KeyboardInterrupt:
print("Saving before quit...")
finally:
torch.save(rarnn, 'rarnn.pt')
print("Saved as rarnn.pt")
# Evaluate
evaluate_and_print('%', "hey maia if the ethereum price is less than 2 0 then turn the living room light on".split(' '))
evaluate_and_print('%', "hey maia what's the ethereum price".split(' '))
evaluate_and_print('%', "hey maia play some Skrillex please and then turn the office light off".split(' '))
evaluate_and_print('%', "turn the office light up and also could you please turn off the living room light and make the temperature of the bedroom to 6 thank you maia".split(' '))
evaluate_and_print('%', "turn the living room light off and turn the bedroom light up and also turn the volume up".split(' '))
elif sys.argv[1] == 'service':
rarnn = torch.load('rarnn.pt')
service = somata.Service('maia:parser', {'parse': parse}, {'bind_port': 8855})