-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblue_chip_sankey.R
98 lines (88 loc) · 3.61 KB
/
blue_chip_sankey.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
library(cfbfastR)
library(ggalluvial)
library(ggtext)
library(ggplot2)
library(dplyr)
library(tidyr)
library(purrr)
library(glue)
library(forcats)
years <- 2020:cfbfastR:::most_recent_cfb_season()
team_info <- cfbfastR::cfbd_team_info(year = cfbfastR:::most_recent_cfb_season())
recruiting_raw <- purrr::map(years, cfbd_recruiting_player) %>%
purrr::list_rbind()
recruiting_raw <- recruiting_raw %>%
mutate(
blue_chip = ifelse(stars >= 4, TRUE, FALSE),
position_2 = case_when(
position == "DUAL" ~ "QB",
position == "PRO" ~ "QB",
position == "OT" ~ "OL",
position == "OG" ~ "OL",
position == "OC" ~ "OL",
position == "LS" ~ "OL",
position == "APB" ~ "RB",
position == "FB" ~ "RB",
position == "OLB" ~ "LB",
position == "ILB" ~ "LB",
position == "WDE" ~ "DL",
position == "SDE" ~ "DL",
position == "DT" ~ "DL",
position == "P" ~ "P/K",
position == "K" ~ "P/K",
TRUE ~ position)
)
recruiting_df <- recruiting_raw %>%
filter(year >= 2016, !is.na(state_province), blue_chip) %>%
filter(committed_to %in% (team_info %>% filter(conference == "ACC") %>% pull("school"))) %>%
left_join(team_info %>%
select("school", "abbreviation", "color"), by = c("committed_to" = "school")) %>%
mutate(school = committed_to,
committed_to = abbreviation) %>%
#count(state_province) %>% arrange(desc(n)) %>%
group_by(state_province) %>%
mutate(n_state = n()) %>%
ungroup() %>%
group_by(committed_to) %>%
mutate(n_school = n()) %>%
ungroup() %>%
mutate(
state = fct_rev(fct_reorder(state_province, n_state)),
committed_to = fct_rev(fct_reorder(committed_to, n_school)),
state = fct_lump_n(state, 10)) %>%
mutate(
position = factor(position, levels = c(
"DUAL","PRO","OT","OG","OC","LS","APB","RB","FB","WR","TE",
"ATH","OLB","ILB","S","CB","WDE","SDE","DT","P","K")),
position_2 = factor(position_2, levels = c(
"QB","OL","RB","WR","TE","ATH","LB","S","CB","DL","P/K")),
stars = as.factor(stars)) %>%
group_by(position_2) %>%
mutate(n_pos = n()) %>%
ungroup() %>%
mutate(position_2 = fct_rev(fct_reorder(position_2, n_pos))) %>%
group_by(position_2, committed_to, state, school, color) %>%
#group_by(position_2,position,committed_to,stars,state) %>% #_province) %>%
summarize(freq = n(), .groups = 'drop') %>%
ungroup() %>%
arrange(state, committed_to, position_2) %>%
select("state", "committed_to", "position_2", "freq", "school", "color")
recruiting_df %>%
ggplot(aes(y = freq,
axis1 = state,
axis2 = committed_to,
axis3 = position_2)) +
geom_alluvium(aes(fill = school), width = 1/4) +
geom_stratum(width = 1/4, fill = "black", color = "grey", alpha = .7) +
geom_label(stat = "stratum", aes(label = after_stat(stratum)), alpha = .7) +
scale_x_discrete(breaks = c("state","committed_to","position_2"),
labels = c("State","School","Position")) +
labs(y = "Number of Recruits",
title = glue::glue("ACC <span style='color:#1A52D1'>Blue Chip</span> Recruits {min(years)}-{max(years)}"),
subtitle = "Where they come from, where they go, and what they are",
caption = "@Saiem Gilani | Data: @CFB_Data via @cfbfastR") +
theme_minimal() +
theme(legend.position = "none",
plot.title = element_markdown(size = 26, face = "bold", hjust = .5),
plot.subtitle = element_text(size = 16, face = "italic", hjust = .5))
ggsave("media/acc_bc_sankey.png", height = 14, width = 8, unit = "in")