Skip to content

Latest commit

 

History

History
384 lines (348 loc) · 29.6 KB

README.md

File metadata and controls

384 lines (348 loc) · 29.6 KB

C3D

1. 简介

C3D是使用三维卷积进行视频动作识别的开荒者,论文链接:Learning Spatiotemporal Features with 3D Convolutional Networks

本例程对MMAction的C3D_UCF101模型进行了移植,在相同的预处理流程下可以做到精度对齐。

2. 特性

  • 支持BM1688/CV186X(SoC)、BM1684X(x86 PCIe、SoC)、BM1684(x86 PCIe、SoC、arm PCIe)
  • 支持FP32、FP16(BM1688/BM1684X)、INT8模型编译和推理
  • 支持基于BMCV和OpenCV预处理的C++推理
  • 支持基于OpenCV预处理的Python推理
  • 支持单batch和多batch模型推理
  • 支持视频文件夹测试

3. 准备模型与数据

建议使用TPU-MLIR编译BModel,Pytorch模型在编译前要导出成onnx模型。

本例程在scripts目录下提供了所有相关的模型和数据集的下载脚本download.sh,您也可以自己准备模型和数据集,并参考4. 模型转换进行模型转换。

如果您有自己训练的Pytorch C3D模型,您可以参考tools/c3d_transform.py,自行修改源模型路径和模型网络的层名,确保能够加载您的参数,以成功转换torchscript和onnx模型。同时,您需要准备用于测试的数据集,如果量化模型,还要准备用于量化的数据集。

# 安装unzip,若已安装请跳过,非ubuntu系统视情况使用yum或其他方式安装
sudo apt install unzip
chmod -R +x scripts/
./scripts/download.sh

执行后,模型保存在models,数据集在datasets

下载的模型包括:

./models
├── BM1684
│   ├── c3d_fp32_1b.bmodel   # 使用TPU-MLIR编译,用于BM1684的FP32 BModel,batch_size=1
│   ├── c3d_fp32_4b.bmodel   # 使用TPU-MLIR编译,用于BM1684的FP32 BModel,batch_size=4
│   ├── c3d_int8_1b.bmodel   # 使用TPU-MLIR编译,用于BM1684的INT8 BModel,batch_size=1
│   └── c3d_int8_4b.bmodel   # 使用TPU-MLIR编译,用于BM1684的INT8 BModel,batch_size=4
├── BM1684X
│   ├── c3d_fp32_1b.bmodel   # 使用TPU-MLIR编译,用于BM1684X的FP32 BModel,batch_size=1
│   ├── c3d_fp32_4b.bmodel   # 使用TPU-MLIR编译,用于BM1684X的FP32 BModel,batch_size=4
│   ├── c3d_fp16_1b.bmodel   # 使用TPU-MLIR编译,用于BM1684X的FP16 BModel,batch_size=1
│   ├── c3d_fp16_4b.bmodel   # 使用TPU-MLIR编译,用于BM1684X的FP16 BModel,batch_size=4
│   ├── c3d_int8_1b.bmodel   # 使用TPU-MLIR编译,用于BM1684X的INT8 BModel,batch_size=1
│   └── c3d_int8_4b.bmodel   # 使用TPU-MLIR编译,用于BM1684X的INT8 BModel,batch_size=4
├── BM1688
│   ├── c3d_fp32_1b.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP32 BModel,batch_size=1,num_core=1
│   ├── c3d_fp32_4b.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP32 BModel,batch_size=4,num_core=1
│   ├── c3d_fp16_1b.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP16 BModel,batch_size=1,num_core=1
│   ├── c3d_fp16_4b.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP16 BModel,batch_size=4,num_core=1
│   ├── c3d_int8_1b.bmodel   # 使用TPU-MLIR编译,用于BM1688的INT8 BModel,batch_size=1,num_core=1
│   ├── c3d_int8_4b.bmodel   # 使用TPU-MLIR编译,用于BM1688的INT8 BModel,batch_size=4,num_core=1
│   ├── c3d_fp32_1b_2core.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP32 BModel,batch_size=1,num_core=2
│   ├── c3d_fp32_4b_2core.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP32 BModel,batch_size=4,num_core=2
│   ├── c3d_fp16_1b_2core.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP16 BModel,batch_size=1,num_core=2
│   ├── c3d_fp16_4b_2core.bmodel   # 使用TPU-MLIR编译,用于BM1688的FP16 BModel,batch_size=4,num_core=2
│   ├── c3d_int8_1b_2core.bmodel   # 使用TPU-MLIR编译,用于BM1688的INT8 BModel,batch_size=1,num_core=2
│   └── c3d_int8_4b_2core.bmodel   # 使用TPU-MLIR编译,用于BM1688的INT8 BModel,batch_size=4,num_core=2
├── CV186X
│   ├── c3d_fp32_1b.bmodel   # 使用TPU-MLIR编译,用于CV186X的FP32 BModel,batch_size=1
│   ├── c3d_fp32_4b.bmodel   # 使用TPU-MLIR编译,用于CV186X的FP32 BModel,batch_size=4
│   ├── c3d_fp16_1b.bmodel   # 使用TPU-MLIR编译,用于CV186X的FP16 BModel,batch_size=1
│   ├── c3d_fp16_4b.bmodel   # 使用TPU-MLIR编译,用于CV186X的FP16 BModel,batch_size=4
│   ├── c3d_int8_1b.bmodel   # 使用TPU-MLIR编译,用于CV186X的INT8 BModel,batch_size=1
│   └── c3d_int8_4b.bmodel   # 使用TPU-MLIR编译,用于CV186X的INT8 BModel,batch_size=4
│── torch
│   └── c3d_ucf101.pt        # trace后的torchscript模型
└── onnx
    └── c3d_ucf101.onnx      # 导出的onnx动态模型       

下载的数据包括:

./datasets/UCF_test_01       #UCF101的一个测试子集。

4. 模型编译

导出的模型需要编译成BModel才能在SOPHON TPU上运行,如果使用下载好的BModel可跳过本节。建议使用TPU-MLIR编译BModel。

模型编译前需要安装TPU-MLIR,具体可参考TPU-MLIR环境搭建。安装好后需在TPU-MLIR环境中进入例程目录。使用TPU-MLIR将onnx模型编译为BModel,具体方法可参考《TPU-MLIR快速入门手册》的“3. 编译ONNX模型”(请从算能官网相应版本的SDK中获取)。

  • 生成FP32 BModel

​本例程在scripts目录下提供了TPU-MLIR编译FP32 BModel的脚本,请注意修改gen_fp32bmodel_mlir.sh中的onnx模型路径、生成模型目录和输入大小shapes等参数,并在执行时指定BModel运行的目标平台(支持BM1684/BM1684X/BM1688/CV186X),如:

./scripts/gen_fp32bmodel_mlir.sh bm1684 #bm1684x/bm1688/cv186x

​执行上述命令会在models/BM1684等文件夹下生成c3d_fp32_1b.bmodel等文件,即转换好的FP32 BModel。

  • 生成FP16 BModel

​本例程在scripts目录下提供了TPU-MLIR编译FP16 BModel的脚本,请注意修改gen_fp16bmodel_mlir.sh中的onnx模型路径、生成模型目录和输入大小shapes等参数,并在执行时指定BModel运行的目标平台(支持BM1684X/BM1688/CV186X),如:

./scripts/gen_fp16bmodel_mlir.sh bm1684x #bm1688/cv186x

​执行上述命令会在models/BM1684X/等文件夹下生成c3d_fp16_1b.bmodel等文件,即转换好的FP16 BModel。

  • 生成INT8 BModel

​本例程在scripts目录下提供了量化INT8 BModel的脚本,请注意修改gen_int8bmodel_mlir.sh中的onnx模型路径、生成模型目录和输入大小shapes等参数,在执行时输入BModel的目标平台(支持BM1684/BM1684X/BM1688/CV186X),如:

./scripts/gen_int8bmodel_mlir.sh bm1684 #bm1684x/bm1688/cv186x

​上述脚本会在models/BM1684等文件夹下生成c3d_int8_1b.bmodel等文件,即转换好的INT8 BModel。

如果您不使用本例程的数据集,本例程在tools目录下提供了准备npy数据的python脚本,用户可以根据脚本自己准备npy格式量化数据集。

cd tools
python3 c3d_npy.py --input_path ../datasets/UCF_test_01 #for tpu-mlir

执行后,会在datasets目录下产生cali_set_npy文件夹,可以作为量化模型使用的数据集。

5. 例程测试

6. 精度测试

6.1 测试方法

首先,参考C++例程Python例程推理要测试的数据集,生成预测的json文件。 然后,使用tools目录下的eval_ucf.py脚本,将测试生成的json文件与测试集标签json文件进行对比,计算出准确率信息,命令如下:

# 请根据实际情况修改程序路径和json文件路径
python3 tools/eval_ucf.py --gt_path datasets/ground_truth.json --result_json cpp/c3d_bmcv/results/c3d_fp32_1b.bmodel_bmcv_cpp.json

6.2 测试结果

根据本例程提供的数据集,测试结果如下:

测试平台 测试程序 测试模型 ACC
SE5-16 c3d_opencv.py c3d_fp32_1b.bmodel 0.715
SE5-16 c3d_opencv.py c3d_fp32_4b.bmodel 0.715
SE5-16 c3d_opencv.py c3d_int8_1b.bmodel 0.712
SE5-16 c3d_opencv.py c3d_int8_4b.bmodel 0.712
SE5-16 c3d_opencv.soc c3d_fp32_1b.bmodel 0.715
SE5-16 c3d_opencv.soc c3d_fp32_4b.bmodel 0.715
SE5-16 c3d_opencv.soc c3d_int8_1b.bmodel 0.712
SE5-16 c3d_opencv.soc c3d_int8_4b.bmodel 0.712
SE5-16 c3d_bmcv.soc c3d_fp32_1b.bmodel 0.715
SE5-16 c3d_bmcv.soc c3d_fp32_4b.bmodel 0.715
SE5-16 c3d_bmcv.soc c3d_int8_1b.bmodel 0.710
SE5-16 c3d_bmcv.soc c3d_int8_4b.bmodel 0.710
SE7-32 c3d_opencv.py c3d_fp32_1b.bmodel 0.715
SE7-32 c3d_opencv.py c3d_fp32_4b.bmodel 0.715
SE7-32 c3d_opencv.py c3d_fp16_1b.bmodel 0.715
SE7-32 c3d_opencv.py c3d_fp16_4b.bmodel 0.715
SE7-32 c3d_opencv.py c3d_int8_1b.bmodel 0.715
SE7-32 c3d_opencv.py c3d_int8_4b.bmodel 0.715
SE7-32 c3d_opencv.soc c3d_fp32_1b.bmodel 0.715
SE7-32 c3d_opencv.soc c3d_fp32_4b.bmodel 0.715
SE7-32 c3d_opencv.soc c3d_fp16_1b.bmodel 0.715
SE7-32 c3d_opencv.soc c3d_fp16_4b.bmodel 0.715
SE7-32 c3d_opencv.soc c3d_int8_1b.bmodel 0.715
SE7-32 c3d_opencv.soc c3d_int8_4b.bmodel 0.715
SE7-32 c3d_bmcv.soc c3d_fp32_1b.bmodel 0.715
SE7-32 c3d_bmcv.soc c3d_fp32_4b.bmodel 0.715
SE7-32 c3d_bmcv.soc c3d_fp16_1b.bmodel 0.715
SE7-32 c3d_bmcv.soc c3d_fp16_4b.bmodel 0.715
SE7-32 c3d_bmcv.soc c3d_int8_1b.bmodel 0.712
SE7-32 c3d_bmcv.soc c3d_int8_4b.bmodel 0.712
SE9-16 c3d_opencv.py c3d_fp32_1b.bmodel 0.715
SE9-16 c3d_opencv.py c3d_fp32_4b.bmodel 0.715
SE9-16 c3d_opencv.py c3d_fp16_1b.bmodel 0.715
SE9-16 c3d_opencv.py c3d_fp16_4b.bmodel 0.715
SE9-16 c3d_opencv.py c3d_int8_1b.bmodel 0.712
SE9-16 c3d_opencv.py c3d_int8_4b.bmodel 0.712
SE9-16 c3d_opencv.soc c3d_fp32_1b.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_fp32_4b.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_fp16_1b.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_fp16_4b.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_int8_1b.bmodel 0.712
SE9-16 c3d_opencv.soc c3d_int8_4b.bmodel 0.712
SE9-16 c3d_bmcv.soc c3d_fp32_1b.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_fp32_4b.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_fp16_1b.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_fp16_4b.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_int8_1b.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_int8_4b.bmodel 0.715
SE9-16 c3d_opencv.py c3d_fp32_1b_2core.bmodel 0.715
SE9-16 c3d_opencv.py c3d_fp32_4b_2core.bmodel 0.715
SE9-16 c3d_opencv.py c3d_fp16_1b_2core.bmodel 0.715
SE9-16 c3d_opencv.py c3d_fp16_4b_2core.bmodel 0.715
SE9-16 c3d_opencv.py c3d_int8_1b_2core.bmodel 0.712
SE9-16 c3d_opencv.py c3d_int8_4b_2core.bmodel 0.712
SE9-16 c3d_opencv.soc c3d_fp32_1b_2core.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_fp32_4b_2core.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_fp16_1b_2core.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_fp16_4b_2core.bmodel 0.715
SE9-16 c3d_opencv.soc c3d_int8_1b_2core.bmodel 0.712
SE9-16 c3d_opencv.soc c3d_int8_4b_2core.bmodel 0.712
SE9-16 c3d_bmcv.soc c3d_fp32_1b_2core.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_fp32_4b_2core.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_fp16_1b_2core.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_fp16_4b_2core.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_int8_1b_2core.bmodel 0.715
SE9-16 c3d_bmcv.soc c3d_int8_4b_2core.bmodel 0.715
SE9-8 c3d_opencv.py c3d_fp32_1b.bmodel 0.715
SE9-8 c3d_opencv.py c3d_fp32_4b.bmodel 0.715
SE9-8 c3d_opencv.py c3d_fp16_1b.bmodel 0.715
SE9-8 c3d_opencv.py c3d_fp16_4b.bmodel 0.715
SE9-8 c3d_opencv.py c3d_int8_1b.bmodel 0.712
SE9-8 c3d_opencv.py c3d_int8_4b.bmodel 0.712
SE9-8 c3d_opencv.soc c3d_fp32_1b.bmodel 0.715
SE9-8 c3d_opencv.soc c3d_fp32_4b.bmodel 0.715
SE9-8 c3d_opencv.soc c3d_fp16_1b.bmodel 0.715
SE9-8 c3d_opencv.soc c3d_fp16_4b.bmodel 0.715
SE9-8 c3d_opencv.soc c3d_int8_1b.bmodel 0.712
SE9-8 c3d_opencv.soc c3d_int8_4b.bmodel 0.712
SE9-8 c3d_bmcv.soc c3d_fp32_1b.bmodel 0.715
SE9-8 c3d_bmcv.soc c3d_fp32_4b.bmodel 0.715
SE9-8 c3d_bmcv.soc c3d_fp16_1b.bmodel 0.715
SE9-8 c3d_bmcv.soc c3d_fp16_4b.bmodel 0.715
SE9-8 c3d_bmcv.soc c3d_int8_1b.bmodel 0.715
SE9-8 c3d_bmcv.soc c3d_int8_4b.bmodel 0.715

测试说明

  1. 由于sdk版本之间可能存在差异,实际运行结果与本表有<0.01的精度误差是正常的;
  2. 在搭载了相同TPU和SOPHONSDK的PCIe或SoC平台上,相同程序的精度一致,SE5系列对应BM1684,SE7系列对应BM1684X,SE9系列中SE9-16对应BM1688,SE9-8对应CV186X;

7. 性能测试

7.1 bmrt_test

使用bmrt_test测试模型的理论性能:

# 请根据实际情况修改要测试的bmodel路径和devid参数
bmrt_test --bmodel models/BM1684/c3d_fp32_1b.bmodel

测试结果中的calculate time就是模型推理的时间,多batch size模型应当除以相应的batch size才是理论推理时间。 测试各个模型的理论推理时间,结果如下:

测试模型 calculate time(ms)
BM1684/c3d_fp32_1b.bmodel 62.37
BM1684/c3d_fp32_4b.bmodel 50.10
BM1684/c3d_int8_1b.bmodel 28.25
BM1684/c3d_int8_4b.bmodel 7.39
BM1684X/c3d_fp32_1b.bmodel 79.05
BM1684X/c3d_fp32_4b.bmodel 73.64
BM1684X/c3d_fp16_1b.bmodel 9.50
BM1684X/c3d_fp16_4b.bmodel 7.11
BM1684X/c3d_int8_1b.bmodel 5.57
BM1684X/c3d_int8_4b.bmodel 4.41
BM1688/c3d_fp32_1b.bmodel 405.18
BM1688/c3d_fp32_4b.bmodel 387.96
BM1688/c3d_fp16_1b.bmodel 69.44
BM1688/c3d_fp16_4b.bmodel 62.81
BM1688/c3d_int8_1b.bmodel 25.90
BM1688/c3d_int8_4b.bmodel 22.57
BM1688/c3d_fp32_1b_2core.bmodel 404.29
BM1688/c3d_fp32_4b_2core.bmodel 389.69
BM1688/c3d_fp16_1b_2core.bmodel 55.28
BM1688/c3d_fp16_4b_2core.bmodel 48.73
BM1688/c3d_int8_1b_2core.bmodel 22.47
BM1688/c3d_int8_4b_2core.bmodel 19.40
CV186X/c3d_fp32_1b.bmodel 417.85
CV186X/c3d_fp32_4b.bmodel 394.11
CV186X/c3d_fp16_1b.bmodel 76.09
CV186X/c3d_fp16_4b.bmodel 65.99
CV186X/c3d_int8_1b.bmodel 32.57
CV186X/c3d_int8_4b.bmodel 27.78

测试说明

  1. 性能测试结果具有一定的波动性;
  2. calculate time已折算为每个视频平均推理时间;
  3. SoC和PCIe的测试结果基本一致。

7.2 程序运行性能

参考C++例程Python例程运行程序,并查看统计的视频解码时间、预处理时间、推理时间、后处理时间。C++和Python例程打印的时间已经折算为单张图片的处理时间。

在不同的测试平台上,使用不同的例程、模型测试datasets/UCF_test_01,性能测试结果如下:

测试平台 测试程序 测试模型 decode_time preprocess_time inference_time postprocess_time
SE5-16 c3d_opencv.py c3d_fp32_1b.bmodel 66.43 30.22 68.69 0.09
SE5-16 c3d_opencv.py c3d_fp32_4b.bmodel 67.00 37.55 56.48 0.03
SE5-16 c3d_opencv.py c3d_int8_1b.bmodel 66.39 30.39 34.65 0.09
SE5-16 c3d_opencv.py c3d_int8_4b.bmodel 67.18 37.69 13.71 0.03
SE5-16 c3d_opencv.soc c3d_fp32_1b.bmodel 71.78 26.17 62.32 0.01
SE5-16 c3d_opencv.soc c3d_fp32_4b.bmodel 71.94 25.91 50.09 0.00
SE5-16 c3d_opencv.soc c3d_int8_1b.bmodel 71.73 26.07 28.22 0.01
SE5-16 c3d_opencv.soc c3d_int8_4b.bmodel 71.67 25.80 7.39 0.00
SE5-16 c3d_bmcv.soc c3d_fp32_1b.bmodel 75.55 6.74 62.29 0.01
SE5-16 c3d_bmcv.soc c3d_fp32_4b.bmodel 74.63 6.62 50.08 0.00
SE5-16 c3d_bmcv.soc c3d_int8_1b.bmodel 74.72 6.72 28.21 0.01
SE5-16 c3d_bmcv.soc c3d_int8_4b.bmodel 74.97 6.57 7.38 0.00
SE7-32 c3d_opencv.py c3d_fp32_1b.bmodel 65.80 30.95 86.39 0.09
SE7-32 c3d_opencv.py c3d_fp32_4b.bmodel 67.21 38.68 80.74 0.03
SE7-32 c3d_opencv.py c3d_fp16_1b.bmodel 66.06 31.05 16.78 0.09
SE7-32 c3d_opencv.py c3d_fp16_4b.bmodel 67.21 38.67 14.18 0.03
SE7-32 c3d_opencv.py c3d_int8_1b.bmodel 65.83 30.88 12.88 0.09
SE7-32 c3d_opencv.py c3d_int8_4b.bmodel 67.07 38.60 11.53 0.03
SE7-32 c3d_opencv.soc c3d_fp32_1b.bmodel 71.89 26.43 79.06 0.01
SE7-32 c3d_opencv.soc c3d_fp32_4b.bmodel 72.32 26.08 73.65 0.00
SE7-32 c3d_opencv.soc c3d_fp16_1b.bmodel 71.86 26.39 9.48 0.01
SE7-32 c3d_opencv.soc c3d_fp16_4b.bmodel 72.34 26.15 7.11 0.00
SE7-32 c3d_opencv.soc c3d_int8_1b.bmodel 72.16 26.40 5.57 0.01
SE7-32 c3d_opencv.soc c3d_int8_4b.bmodel 72.36 26.14 4.40 0.01
SE7-32 c3d_bmcv.soc c3d_fp32_1b.bmodel 74.45 3.64 79.03 0.01
SE7-32 c3d_bmcv.soc c3d_fp32_4b.bmodel 75.02 3.48 73.63 0.00
SE7-32 c3d_bmcv.soc c3d_fp16_1b.bmodel 74.71 3.60 9.46 0.01
SE7-32 c3d_bmcv.soc c3d_fp16_4b.bmodel 74.66 3.49 7.10 0.00
SE7-32 c3d_bmcv.soc c3d_int8_1b.bmodel 74.84 3.62 5.52 0.01
SE7-32 c3d_bmcv.soc c3d_int8_4b.bmodel 75.16 3.49 4.41 0.00
SE9-16 c3d_opencv.py c3d_fp32_1b.bmodel 96.75 42.28 414.48 0.15
SE9-16 c3d_opencv.py c3d_fp32_4b.bmodel 98.52 52.92 397.24 0.05
SE9-16 c3d_opencv.py c3d_fp16_1b.bmodel 92.39 42.43 78.57 0.13
SE9-16 c3d_opencv.py c3d_fp16_4b.bmodel 95.02 52.87 72.27 0.05
SE9-16 c3d_opencv.py c3d_int8_1b.bmodel 93.03 42.33 34.95 0.13
SE9-16 c3d_opencv.py c3d_int8_4b.bmodel 94.30 53.22 32.14 0.05
SE9-16 c3d_opencv.soc c3d_fp32_1b.bmodel 122.06 30.70 405.25 0.02
SE9-16 c3d_opencv.soc c3d_fp32_4b.bmodel 122.44 30.67 388.04 0.01
SE9-16 c3d_opencv.soc c3d_fp16_1b.bmodel 122.15 30.77 69.35 0.02
SE9-16 c3d_opencv.soc c3d_fp16_4b.bmodel 121.63 30.65 62.87 0.01
SE9-16 c3d_opencv.soc c3d_int8_1b.bmodel 122.96 30.66 25.71 0.02
SE9-16 c3d_opencv.soc c3d_int8_4b.bmodel 122.21 30.44 22.66 0.01
SE9-16 c3d_bmcv.soc c3d_fp32_1b.bmodel 128.66 7.74 405.21 0.02
SE9-16 c3d_bmcv.soc c3d_fp32_4b.bmodel 127.97 7.67 388.03 0.01
SE9-16 c3d_bmcv.soc c3d_fp16_1b.bmodel 128.49 7.75 69.32 0.02
SE9-16 c3d_bmcv.soc c3d_fp16_4b.bmodel 128.36 7.58 62.86 0.01
SE9-16 c3d_bmcv.soc c3d_int8_1b.bmodel 128.36 7.73 25.67 0.02
SE9-16 c3d_bmcv.soc c3d_int8_4b.bmodel 129.14 7.62 22.64 0.01
SE9-16 c3d_opencv.py c3d_fp32_1b_2core.bmodel 93.07 42.35 413.64 0.14
SE9-16 c3d_opencv.py c3d_fp32_4b_2core.bmodel 94.06 52.93 397.59 0.05
SE9-16 c3d_opencv.py c3d_fp16_1b_2core.bmodel 92.29 42.29 64.51 0.13
SE9-16 c3d_opencv.py c3d_fp16_4b_2core.bmodel 93.87 53.11 58.81 0.05
SE9-16 c3d_opencv.py c3d_int8_1b_2core.bmodel 92.49 42.50 31.77 0.13
SE9-16 c3d_opencv.py c3d_int8_4b_2core.bmodel 93.98 52.95 28.65 0.05
SE9-16 c3d_opencv.soc c3d_fp32_1b_2core.bmodel 122.02 30.92 404.39 0.02
SE9-16 c3d_opencv.soc c3d_fp32_4b_2core.bmodel 122.63 30.58 388.57 0.01
SE9-16 c3d_opencv.soc c3d_fp16_1b_2core.bmodel 122.53 30.66 55.30 0.02
SE9-16 c3d_opencv.soc c3d_fp16_4b_2core.bmodel 122.32 30.46 48.80 0.01
SE9-16 c3d_opencv.soc c3d_int8_1b_2core.bmodel 122.52 30.69 22.54 0.02
SE9-16 c3d_opencv.soc c3d_int8_4b_2core.bmodel 122.31 30.63 19.48 0.01
SE9-16 c3d_bmcv.soc c3d_fp32_1b_2core.bmodel 127.54 7.87 404.36 0.02
SE9-16 c3d_bmcv.soc c3d_fp32_4b_2core.bmodel 128.10 7.66 388.56 0.01
SE9-16 c3d_bmcv.soc c3d_fp16_1b_2core.bmodel 131.29 7.90 55.29 0.02
SE9-16 c3d_bmcv.soc c3d_fp16_4b_2core.bmodel 130.37 7.57 48.79 0.01
SE9-16 c3d_bmcv.soc c3d_int8_1b_2core.bmodel 128.57 7.83 22.49 0.02
SE9-16 c3d_bmcv.soc c3d_int8_4b_2core.bmodel 127.93 7.50 19.46 0.01
SE9-8 c3d_opencv.py c3d_fp32_1b.bmodel 91.67 41.95 427.43 0.13
SE9-8 c3d_opencv.py c3d_fp32_4b.bmodel 93.11 50.04 403.67 0.05
SE9-8 c3d_opencv.py c3d_fp16_1b.bmodel 91.76 42.03 85.14 0.13
SE9-8 c3d_opencv.py c3d_fp16_4b.bmodel 88.07 49.75 75.09 0.05
SE9-8 c3d_opencv.py c3d_int8_1b.bmodel 86.82 42.07 41.89 0.13
SE9-8 c3d_opencv.py c3d_int8_4b.bmodel 87.39 49.91 37.04 0.04
SE9-8 c3d_opencv.soc c3d_fp32_1b.bmodel 120.19 33.83 418.01 0.02
SE9-8 c3d_opencv.soc c3d_fp32_4b.bmodel 119.16 33.51 394.04 0.01
SE9-8 c3d_opencv.soc c3d_fp16_1b.bmodel 119.90 33.60 75.82 0.02
SE9-8 c3d_opencv.soc c3d_fp16_4b.bmodel 118.36 33.43 66.01 0.01
SE9-8 c3d_opencv.soc c3d_int8_1b.bmodel 119.01 33.79 32.55 0.02
SE9-8 c3d_opencv.soc c3d_int8_4b.bmodel 118.10 33.40 27.83 0.01
SE9-8 c3d_bmcv.soc c3d_fp32_1b.bmodel 130.30 9.05 418.00 0.02
SE9-8 c3d_bmcv.soc c3d_fp32_4b.bmodel 130.70 8.84 394.03 0.01
SE9-8 c3d_bmcv.soc c3d_fp16_1b.bmodel 131.08 9.00 75.79 0.02
SE9-8 c3d_bmcv.soc c3d_fp16_4b.bmodel 128.82 8.75 66.03 0.01
SE9-8 c3d_bmcv.soc c3d_int8_1b.bmodel 130.24 8.95 32.53 0.02
SE9-8 c3d_bmcv.soc c3d_int8_4b.bmodel 128.00 8.81 27.79 0.01

测试说明

  1. 时间单位均为毫秒(ms),统计的时间均为平均每张图片处理的时间;
  2. 性能测试结果具有一定的波动性,建议多次测试取平均值;
  3. SE5-16/SE7-32的主控处理器均为8核[email protected],SE9-16的主控处理器为8核[email protected],SE9-8为6核[email protected],PCIe上的性能由于处理器的不同可能存在较大差异;
  4. 图片分辨率对解码时间影响较大,推理结果对后处理时间影响较大,不同的测试图片可能存在较大差异,不同的阈值对后处理时间影响较大。
  5. C3D的后处理只有argmax,耗时很短,可以忽略。

8. FAQ

请参考FAQ查看一些常见的问题与解答。