-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathETL_combi.py
667 lines (504 loc) · 25.3 KB
/
ETL_combi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import pandas as pd
import psycopg2
from sqlalchemy import create_engine
from zipfile import ZipFile
import geopy.distance as gd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from geopy.distance import geodesic
from sklearn.metrics import silhouette_score
import networkx as nx
DATABASE_URL = "postgresql://transitpost:transitpost@localhost:5432/transitpost"
engine = create_engine(DATABASE_URL)
def get_db_connection():
conn = psycopg2.connect(DATABASE_URL)
return conn
# with ZipFile("Dataset/GTFS_bus.zip", 'r') as zObject:
# zObject.extractall(
# path="Dataset/buses")
# with ZipFile("Dataset/DMRC_GTFS.zip", 'r') as zObject:
# zObject.extractall(
# path="Dataset/metro")
# #Metro
# # Route.txt Conversion
# routes = pd.read_csv('Dataset/metro/routes.txt')
# def seperator(route_long_name):
# parts = route_long_name.split('_')
# if 'RAPID' in parts:
# parts[0] ='PURPLE'
# if 'ORANGE/AIRPORT' in parts:
# parts[0] ='ORANGE'
# color = parts[0] if len(parts)>1 else None
# if 'to' in parts[-1]:
# rt = parts[-1].split(' to ')
# start_point = rt[0]
# end_point = rt[1]
# else:
# start_point=end_point=None
# return pd.Series([color,start_point,end_point])
# routes[['route_color','start_point','end_point']] = routes['route_long_name'].apply(seperator)
# routes = routes.sort_values(by=['route_color'])
# print('1.routes')
# print(routes.head().to_string())
# # # empty the text file if previously used to prevent duplication
# routes.to_csv('Dataset/routes4.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# # # Stop_times.txt conversion
# stop_time = pd.read_csv('Dataset/metro/stop_times.txt')
# def normalize_time(time_str):
# h, m, s = map(int, time_str.split(':'))
# if h >= 24:
# h = h % 24
# return f"{h:02}:{m:02}:{s:02}"
# stop_time['arrival_time'] = stop_time['arrival_time'].apply(normalize_time)
# stop_time['departure_time'] = stop_time['departure_time'].apply(normalize_time)
# time.to_csv('Dataset/stop_time2.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# print('2.stop_time')
# print(stop_time.head().to_string())
# # # Stops have been randomized where they stop between 5-8 secs at each point
# # # time = next stop arrival_id - previous stop departure_id
# # # distance = next stop_id - previous stop_id
# def process_trip(trip_df):
# # Sort by stop_sequence
# trip_df = trip_df.sort_values(by='stop_sequence')
# trip_df['point_distance'] = trip_df['shape_dist_traveled'].diff().fillna(0)
# # print(trip_df[['trip_id','stop_id','stop_sequence','point_distance']])
# trip_df['arrival_time'] = pd.to_timedelta(trip_df['arrival_time'])
# trip_df['departure_time'] = pd.to_timedelta(trip_df['departure_time'])
# trip_df['individual_time'] = (trip_df['arrival_time'] - trip_df['departure_time'].shift()).fillna(pd.Timedelta(seconds=0))
# trip_df['arrival_time'] = trip_df['arrival_time'].apply(lambda x: str(x).replace('0 days ', ''))
# trip_df['departure_time'] = trip_df['departure_time'].apply(lambda x: str(x).replace('0 days ', ''))
# trip_df['individual_time'] = trip_df['individual_time'].apply(lambda x: str(x).replace('0 days ', ''))
# trip_df['individual_time'] = trip_df['individual_time'].apply(lambda x: str(x).replace('-1 days ', ''))
# return trip_df
# stop_time = stop_time.groupby('trip_id').apply(process_trip).reset_index(drop=True)
# print('3.stop_time')
# print(stop_time.head().to_string())
# stop_time.to_csv('Dataset/stop_time3.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# # #Bus
# bus_stoptime = pd.read_csv('Dataset/buses/stop_times.txt')
# def cal_dist_latlon(row):
# if (row['stop_lat_lag'] == 0) and (row['stop_lon_lag'] == 0):
# return 0
# return gd.geodesic((row['stop_lat_lag'], row['stop_lon_lag']), (row['stop_lat'], row['stop_lon'])).km
# def stop_aggregation():
# stop_df = pd.read_csv('Dataset/buses/stops.txt')
# stop_df['stop_code_id'] = stop_df['stop_code'] + '_' + stop_df['stop_id'].astype(str)
# stop_df.to_csv('Dataset/buses/stop2.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# bus_stoptime = pd.read_csv('Dataset/buses/stop_times.txt')
# stop_aggregation()
# bus_stoptime ['arrival_time'] = bus_stoptime ['arrival_time'].apply(normalize_time)
# bus_stoptime ['departure_time'] = bus_stoptime ['departure_time'].apply(normalize_time)
# print('4.bus_stop_time')
# print(bus_stoptime.head().to_string())
# df2 = pd.read_csv('Dataset/buses/trips.txt')
# bus_stoptime = pd.merge(bus_stoptime,df2, on='trip_id')
# df4 = pd.read_csv('Dataset/buses/routes.txt')
# bus_stoptime = pd.merge(bus_stoptime,df4, on ='route_id')
# df5 =pd.read_csv('Dataset/buses/stops.txt')
# bus_stoptime = pd.merge(bus_stoptime,df5,on='stop_id')
# print('4.2 bus_stop_time')
# print(bus_stoptime.columns)
# print(bus_stoptime.head().to_string())
# bus_stoptime = bus_stoptime.drop(['service_id','shape_id', 'agency_id',
# 'route_short_name','zone_id','route_type'],axis=1)
# print('5.bus_stop_time')
# print(bus_stoptime.head().to_string())
# def process_bus_trip(trip_df):
# # Sort by stop_sequence
# trip_df = trip_df.sort_values(by='stop_sequence')
# trip_df['arrival_time'] = pd.to_timedelta(trip_df['arrival_time'])
# trip_df['departure_time'] = pd.to_timedelta(trip_df['departure_time'])
# trip_df['individual_time'] = (trip_df['arrival_time'] - trip_df['departure_time'].shift()).fillna(pd.Timedelta(seconds=0))
# trip_df['arrival_time'] = trip_df['arrival_time'].apply(lambda x: str(x).replace('0 days ', ''))
# trip_df['departure_time'] = trip_df['departure_time'].apply(lambda x: str(x).replace('0 days ', ''))
# trip_df['individual_time'] = trip_df['individual_time'].apply(lambda x: str(x).replace('0 days ', ''))
# trip_df['individual_time'] = trip_df['individual_time'].apply(lambda x: str(x).replace('-1 days ', ''))
# return trip_df
# #arrival and departure time format, distance
# bus_stoptime = bus_stoptime.groupby('trip_id').apply(process_bus_trip).reset_index(drop=True)
# # fin_df.to_csv('Dataset/buses/stop_times3.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# #individual time to secs, hour of day inclusion
# bus_stoptime['convtime_secs'] = pd.to_timedelta(bus_stoptime['individual_time']).dt.seconds
# bus_stoptime['day_hour'] = pd.to_datetime(bus_stoptime['arrival_time'], format='%H:%M:%S').dt.hour
# # Fill value is taken as 0 so that NaN does not affect calculations
# # The lags for every trips 1st coordinates will be 0 as trips start from there
# bus_stoptime['stop_lat_lag'] = bus_stoptime.groupby('trip_id')['stop_lat'].shift(1,fill_value=0)
# bus_stoptime['stop_lon_lag'] = bus_stoptime.groupby('trip_id')['stop_lon'].shift(1, fill_value=0)
# bus_stoptime['estimated_distance'] = bus_stoptime.apply(cal_dist_latlon, axis=1)
# bus_stoptime['cumulative_distance'] = bus_stoptime.groupby('trip_id')['estimated_distance'].cumsum()
# bus_stoptime['cumulative_time'] = bus_stoptime.groupby('trip_id')['convtime_secs'].cumsum()
# bus_stoptime['route_id_encoded'] = bus_stoptime['route_id'].astype('category').cat.codes
# bus_stoptime['stop_name_encoded'] = bus_stoptime['stop_name'].astype('category').cat.codes
# print('6.bus_stop_time')
# print(bus_stoptime.head().to_string())
# print(bus_stoptime.shape)
# bus_stoptime.to_csv('Dataset/buses/final_stop_times.csv',index=False) # type: ignore
# # #Multimodal
# bus_stop = pd.read_csv('Dataset/buses/stop2.txt')
# metro_stop = pd.read_csv('Dataset/metro/stops.txt')
# def generate_stop_code(row):
# word = row['stop_name'].split(' ')
# if len(word) > 1:
# return f"{row['stop_id']}_{word[0][0]}{word[1][0]}"
# else:
# return f"{row['stop_id']}_{word[0][:2]}"
# metro_stop['stop_code_id'] = metro_stop.apply(generate_stop_code, axis=1)
# metro_stop = metro_stop.drop(['stop_id','stop_desc','stop_code'],axis = 1)
# bus_stop = bus_stop.drop(['stop_id', 'zone_id','stop_code'],axis=1)
# bus_stop['tratype'] = 'Bus'
# df = metro_stop
# df['tratype'] = 'Metro'
# df = pd.concat([df,bus_stop],ignore_index = True)
# print('7.Multimodal_stop_time')
# print(df.head().to_string())
# print(df.shape)
# #Region clustering
# def kmeans_inertia(num_clusters, coords):
# inertia = []
# sil_score =[]
# for k in num_clusters:
# kms = KMeans(n_clusters=k, random_state=42).fit(coords)
# inertia.append(kms.inertia_)
# sil_score.append(silhouette_score(coords,kms.labels_))
# print(inertia)
# plt.plot(num_clusters,inertia)
# plt.xlabel("Number of clusters")
# plt.ylabel("inertia")
# plt.show(block=True)
# print(sil_score)
# plt.plot(num_clusters,sil_score)
# plt.xlabel("Number of clusters")
# plt.ylabel("Sillhouette Score")
# plt.show(block=True)
# num_clusters = [i for i in range(2,25)]
# coords = df[['stop_lat', 'stop_lon']].values
# kmeans_inertia(num_clusters, coords)
# kms = KMeans(n_clusters=10, random_state=42).fit(coords)
# plt.scatter(coords[:, 0], coords[:, 1], c=kms.labels_, cmap='Paired')
# plt.title("K-Means Clustering")
# plt.show(block=True)
# df['cluster'] = kms.labels_
# dsc = df['cluster'].value_counts().to_dict()
# print(dsc)
# distance_within_clusters = []
# for cluster_id in df['cluster'].unique():
# cluster_stops = df[df['cluster'] == cluster_id]
# #calculate distance and time
# for i, stop1 in cluster_stops.iterrows():
# for j, stop2 in cluster_stops.iterrows():
# if i<j and stop1['tratype'] != stop2['tratype']:
# point1 = (stop1['stop_lat'],stop1['stop_lon'])
# point2 = (stop2['stop_lat'],stop2['stop_lon'])
# distance = geodesic(point1,point2).km
# walking_speed = 5 #kmph
# time = distance/walking_speed * 60 * 60 #convert to secs
# #store
# distance_within_clusters.append({
# 'cluster':str(cluster_id),
# 'stop1':stop1['stop_code_id'],
# 'stop_type1':stop1['tratype'],
# 'stop2':stop2['stop_code_id'],
# 'stop_type2':stop2['tratype'],
# 'distance_km': distance,
# 'time':time,
# 'multimodal_type':'walking'
# })
# mbs_dwc = []
# for cluster_id in df['cluster'].unique():
# cluster_stops = df[df['cluster'] == cluster_id]
# #calculate distance and time
# for i, stop1 in cluster_stops.iterrows():
# for j, stop2 in cluster_stops.iterrows():
# if i<j and stop1['tratype'] == stop2['tratype']:
# point1 = (stop1['stop_lat'],stop1['stop_lon'])
# point2 = (stop2['stop_lat'],stop2['stop_lon'])
# distance = geodesic(point1,point2).km
# walking_speed = 5 #kmph
# time = distance/walking_speed * 60 * 60 #convert to secs
# if distance <= 1.5:
# #store
# mbs_dwc.append({
# 'cluster':str(cluster_id),
# 'stop1':stop1['stop_code_id'],
# 'stop_type1':stop1['tratype'],
# 'stop2':stop2['stop_code_id'],
# 'stop_type2':stop2['tratype'],
# 'distance_km': distance,
# 'time':time,
# 'multimodal_type':'walking'
# })
# dwc_df = pd.DataFrame(distance_within_clusters)
# mbs_dwc_df = pd.DataFrame(mbs_dwc)
# print('8.Multimodal_stop_time')
# print(df.head().to_string())
# print(dwc_df.head(10).to_string())
# print(dwc_df.shape)
# print(mbs_dwc_df.head(10).to_string())
# print(mbs_dwc_df.shape)
# dwc_df.to_csv('Dataset/results/dwc2.csv',index=False)
# mbs_dwc_df.to_csv('Dataset/results/mbs_dwc2.csv',index=False)
# metro_stop = df[df['tratype'] == 'Metro']
# bus_stop = df[df['tratype'] == 'Bus']
# def find_nearest_bus_stop(stop1, stop2, max_distance=0.5):
# nearest_stop = None
# for _, st in stop2.iterrows():
# distance = geodesic((stop1['stop_lat'], stop1['stop_lon']),
# (st['stop_lat'], st['stop_lon'])).km
# if distance <= max_distance:
# nearest_stop = st['stop_code_id']
# break
# return nearest_stop
# def find_nearest_metro_stop(bus_stop, metro_stop,max_distance=0.5):
# nearest_metro_stop =None
# for _, metro_stop in metro_stop.iterrows():
# distance = geodesic((bus_stop['stop_lat'], bus_stop['stop_lon']),
# (metro_stop['stop_lat'],metro_stop['stop_lon'])).km
# if distance <= max_distance:
# nearest_metro_stop = metro_stop['stop_code_id']
# break
# return nearest_metro_stop
# metro_stop.loc[:, 'nearest_bus'] = metro_stop.apply(lambda x:find_nearest_bus_stop(x,bus_stop), axis=1)
# metro_to_bus_gap = metro_stop[metro_stop['nearest_bus'].isna()]
# bus_stop.loc[:, 'nearest_metro'] = bus_stop.apply(lambda x:find_nearest_metro_stop(x, metro_stop),axis=1)
# bus_to_metro_gap = bus_stop[bus_stop['nearest_metro'].isna()]
# print('9.Multimodal_stop_time')
# print(metro_stop.head(10).to_string())
# print(metro_to_bus_gap.head(10).to_string())
# print(bus_stop.shape)
# print(bus_stop.head(10).to_string())
# print(bus_to_metro_gap.head(10).to_string())
# print(bus_to_metro_gap.shape)
# metro_stop.to_csv('Dataset/results/metro_bus_near.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# metro_to_bus_gap.to_csv('Dataset/results/metro_bus_NotNear.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# bus_stop.to_csv('Dataset/results/bus_metro_near.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# bus_to_metro_gap.to_csv('Dataset/results/bus_metro_NotNear.txt', header=True, index=None, sep=',', mode='a') # type: ignore
# # #comment from here to the csv_files , execute csv_files first
# # # then execute csvsaver to generate the two csv files
# intra_cluster = pd.read_csv('Dataset/results/dwc2.csv')
# metro_dist = pd.read_csv('Dataset/results/metro_stop_connection.csv')
# bus_dist = pd.read_csv('Dataset/results/bus_stop_connection.csv')
# def generate_metstop_code(row):
# if 'dep_stop' not in metro_dist.columns or len(metro_dist['dep_stop'])!= metro_dist.shape[0]:
# word = row['dep_stop_name'].split(' ')
# if len(word) > 1:
# return f"{row['dep_stop_id']}_{word[0][0]}{word[1][0]}"
# else:
# return f"{row['dep_stop_id']}_{word[0][:2]}"
# if 'arr_stop' not in metro_dist.columns or len(metro_dist['arr_stop'])!= metro_dist.shape[0]:
# word = row['arr_stop_name'].split(' ')
# if len(word) > 1:
# return f"{row['arr_stop_id']}_{word[0][0]}{word[1][0]}"
# else:
# return f"{row['arr_stop_id']}_{word[0][:2]}"
# def generate_bustop_code(row):
# if 'dep_stop' not in bus_dist.columns or len(bus_dist['dep_stop'])!= bus_dist.shape[0]:
# return f"{row['dep_stop_code']}_{row['dep_stop_id']}"
# if 'arr_stop' not in bus_dist.columns or len(bus_dist['arr_stop'])!= bus_dist.shape[0]:
# return f"{row['arr_stop_code']}_{row['arr_stop_id']}"
# metro_dist['dep_stop'] = metro_dist.apply(generate_metstop_code, axis=1) # type: ignore
# metro_dist['arr_stop'] = metro_dist.apply(generate_metstop_code, axis=1) # type: ignore
# bus_dist['dep_stop'] = bus_dist.apply(generate_bustop_code, axis=1) # type: ignore
# bus_dist['arr_stop'] = bus_dist.apply(generate_bustop_code, axis=1) # type: ignore
# metro_dist['distance_km'] = metro_dist['distance_m'].apply(lambda x : x/1000) #km
# metro_dist['multimodal_type'] = 'Metro'
# bus_dist['multimodal_type'] = 'Bus'
# metro_dist = metro_dist.drop(['dep_stop_id', 'dep_stop_name', 'arr_stop_id','arr_stop_name','distance_m'], axis=1)
# bus_dist = bus_dist.drop(['dep_stop_code', 'dep_stop_id', 'arr_stop_code','arr_stop_id'], axis=1)
# intra_cluster = intra_cluster.drop(['time'],axis=1)
# df = metro_dist
# df = pd.concat([df, bus_dist], ignore_index=True)
# df['trip_id_cc'] = df['trip_id'].astype('category').cat.codes
# print('10.Multimodal_stop_time')
# print('Walking')
# print(intra_cluster.head(5).to_string())
# print(intra_cluster.shape)
# print('Metro')
# print(metro_dist.head(10).to_string())
# print(metro_dist.shape)
# print('Bus')
# print(bus_dist.head(10).to_string())
# print(bus_dist.shape)
# print('Combined')
# print(df.head(10).to_string())
# print(df.tail(10).to_string())
# df.to_csv('Dataset/results/combi_mb2.csv', index=False)
# ## namelatlon - txt file deleted
# metro_dist = pd.read_csv('Dataset/metro/stops.txt')
# bus_dist = pd.read_csv('Dataset/buses/stop2.txt')
# metro_dist['type'] = 'Metro'
# bus_dist['type'] = 'Bus'
# def generate_stop_code(row):
# word = row['stop_name'].split(' ')
# if len(word) > 1:
# return f"{row['stop_id']}_{word[0][0]}{word[1][0]}"
# else:
# return f"{row['stop_id']}_{word[0][:2]}"
# def bus_append(row):
# return f"{row['stop_name']}({row['stop_code_id']})"
# def metro_append(row):
# return f"{row['stop_name']}({row['stop_code_id']})"
# metro_dist['stop_code_id'] = metro_dist.apply(generate_stop_code, axis=1)
# bus_dist['multimodal'] = bus_dist.apply(bus_append,axis=1 )
# metro_dist['multimodal'] = metro_dist.apply(metro_append, axis=1)
# metro_dist = metro_dist.drop(['stop_id','stop_code','stop_name','stop_desc',
# 'stop_code_id' ],axis=1)
# bus_dist = bus_dist.drop(['stop_code', 'stop_id','stop_name' ,'zone_id' ,'stop_code_id'], axis=1)
# df= pd.concat([metro_dist,bus_dist],ignore_index=True)
# print('11.Multimodal_stop_time')
# print(df.head().to_string())
# df.to_csv('Dataset/results/NameLatLon.csv',index=False)
# ### Aggreagtion _ metro_reult.py
# # requirements_metro - cumulative time of trip(main), intra-time(db), dep_stop_name(db)
# # stop_id and stop_sequence(db), route_color(db), intra-distance(db)
# # cumulative_trip_distance(main), stop_lat & stop_lon(db)
# # requirements_bus - cumulative time of trip(main), intra-time(db), dep_stop_name(db)
# # stop_id and stop_sequence(db), intra-distance(db)
# # cumulative_trip_distance(main), stop_lat & stop_lon(db)
# metrosc = pd.read_csv('Dataset/results/metro_stop_connection.csv')
# routes = pd.read_csv('Dataset/metro/routes4.txt')
# trips = pd.read_csv('Dataset/metro/trips.txt')
# s_time = pd.read_csv('Dataset/metro/stop_time3.txt')
# stops = pd.read_csv('Dataset/metro/stops.txt')
# feat_tr = ['route_id','trip_id']
# feat_rc = ['route_id','route_color']
# trc = trips[feat_tr].set_index('route_id').join(routes[feat_rc].set_index('route_id'), how='inner')
# trc1 = pd.merge(s_time, stops, on='stop_id',how='inner' )
# trc1= trc1.drop(['stop_headsign','pickup_type', 'drop_off_type',
# 'shape_dist_traveled', 'timepoint','continuous_pickup',
# 'continuous_drop_off','stop_code','stop_desc'], axis=1, errors='ignore')
# trc2 = pd.merge(trc, trc1, on='trip_id',how='inner' )
# print(trc1)
# print(trc1.head().to_string())
# print(trc2)
# print(trc2.info())
# print(trc2.route_color.value_counts())
# print(trc2.groupby('route_color')['trip_id'].nunique())
# trc2.to_csv('Dataset/results/res22.csv',index=False)
# ### CSVsaver.py
# #Execute
# import csv
# import psycopg2
# DATABASE_URL = "postgresql://transitadmin:gtfsuser0000@localhost/gtfs_del"
# bus_output_file = 'Dataset/results/bus_stop_connection.csv'
# metro_output_file = 'Dataset/results/metro_stop_connection.csv'
# def get_db_connection():
# conn = psycopg2.connect(DATABASE_URL)
# return conn
# conn = get_db_connection()
# cur = conn.cursor()
# cur.execute("""
# Select bc.trip_id,bc.stop_code, bc.stop_id ,bc2.stop_code, bc2.stop_id, bc2.estimated_distance,
# bc2.individual_time,bc.stop_sequence,bc2.stop_sequence
# From buses_congo bc
# Join buses_congo bc2 ON bc.trip_id = bc2.trip_id AND bc.stop_sequence+1 = bc2.stop_sequence
# Order by bc.trip_id
# """)
# bus_stop_connections = cur.fetchall()
# cur.execute("""
# SELECT st1.trip_id, st1.stop_id, s1.stop_name, st2.stop_id, s2.stop_name, st2.point_distance, EXTRACT(EPOCH FROM (st2.individual_time::interval)),
# st1.stop_sequence, st2.stop_sequence
# FROM stop_times st1
# JOIN stop_times st2 ON st1.trip_id = st2.trip_id AND st1.stop_sequence + 1 = st2.stop_sequence
# JOIN trips t ON st1.trip_id = t.trip_id
# JOIN stops s1 ON st1.stop_id = s1.stop_id
# JOIN stops s2 ON st2.stop_id = s2.stop_id
# Order by st1.trip_id
# """)
# metro_stop_connections = cur.fetchall()
# cur.close()
# conn.close()
# with open(bus_output_file, mode='w', newline='') as file:
# writer = csv.writer(file)
# writer.writerow(['trip_id','dep_stop_code','dep_stop_id','arr_stop_code'
# ,'arr_stop_id','distance_km','time_secs','dep_stop_sequence','arr_stop_sequence'])
# writer.writerows(bus_stop_connections)
# print(f'Bus Data Successfully saved to output file')
# with open(metro_output_file, mode='w', newline='') as file:
# writer = csv.writer(file)
# writer.writerow(['trip_id','dep_stop_id','dep_stop_name','arr_stop_id','arr_stop_name',
# 'distance_m','time_secs','dep_stop_sequence','arr_stop_sequence'])
# writer.writerows(metro_stop_connections)
# print(f'Metro Data Successfully saved to output file')
# ### Astar_preparation file
# df = pd.read_csv('Dataset/results/combi_mb.csv')
# df1 = pd.read_csv('Dataset/results/dwc2.csv')
# df2 = pd.read_csv('Dataset/results/mbs_dwc2.csv')
# heu = pd.read_csv('Dataset/results/NameLatLon.csv')
# df['tcc'] = df['trip_id'].astype('category').cat.codes
# df = df.drop(['trip_id'],axis = 1, errors = 'ignore' )
# print(df.info())
# print()
# print(df.head().to_string())
# low_dist = 1.0
# mid_dist = 2.5
# df1_lowdist = df1[(df1['distance_km'] <= low_dist)]
# df1_midist = df1[(df1['distance_km'] <= mid_dist)]
# print(len(df1_lowdist))
# print(len(df1_midist))
# print(df1.columns)
# low_dist = 0.6
# mid_dist = 1.5
# df2_lowdist = df2[(df2['distance_km'] <= low_dist)]
# df2_midist = df2[(df2['distance_km'] <= mid_dist) & (df2['stop_type1'] == 'Bus')]
# print(len(df2_lowdist))
# print(len(df2_midist))
# print(df2.columns)
# walk_df = pd.concat([df1_midist,df2_midist], ignore_index = True)
# print(walk_df.shape)
# transport_graph = nx.DiGraph()
# for _,row in df.iterrows():
# transport_graph.add_edge(row['dep_stop'], row['arr_stop'],
# time=row['time_secs'],
# distance=row['distance_km'],
# multimodal_type=row['multimodal_type'])
# transport_graph.add_edge(row['arr_stop'], row['dep_stop'],
# time=row['time_secs'],
# distance=row['distance_km'],
# multimodal_type=row['multimodal_type'])
# print(f"Transport Graph: {transport_graph.number_of_nodes()} nodes, {transport_graph.number_of_edges()} edges")
# walking_graph = nx.DiGraph()
# for _,row in walk_df.iterrows():
# walking_graph.add_edge(row['stop1'], row['stop2'],
# time=row['time'],
# distance=row['distance_km'],
# multimodal_type=row['multimodal_type'])
# walking_graph.add_edge(row['stop2'], row['stop1'],
# time=row['time'],
# distance=row['distance_km'],
# multimodal_type=row['multimodal_type'])
# print(f"Transport Graph: {walking_graph.number_of_nodes()} nodes, {walking_graph.number_of_edges()} edges")
# multimodal_graph = nx.compose(transport_graph, walking_graph)
# print(f"Multimodal Graph: {multimodal_graph.number_of_nodes()} nodes, {multimodal_graph.number_of_edges()} edges")
## Code for saving graph is remaining
# csv_files = {
# 'agency':'Dataset/metro/agency.txt',
# 'calendar':'Dataset/metro/calendar.txt',
# 'route': 'Dataset/metro/routes4.txt',
# 'shape': 'Dataset/metro/shapes.txt',
# 'stop_times':'Dataset/metro/stop_time3.txt',
# 'stops': 'Dataset/metro/stops.txt',
# 'trips': 'Dataset/metro/trips.txt',
# 'buses_agency':'Dataset/buses/agency.txt',
# 'buses_calendar':'Dataset/buses/calendar.txt',
# 'buses_route': 'Dataset/buses/routes.txt',
# 'buses_fare_attributes': 'Dataset/buses/fare_attributes.txt',
# 'buses_fare_rules':'Dataset/buses/fare_rules.txt',
# 'buses_stop_times':'Dataset/buses/stop_times2.txt',
# 'buses_stops': 'Dataset/buses/stops.txt',
# 'buses_trips': 'Dataset/buses/trips.txt',
# 'buses_st2': 'Dataset/buses/stop2.txt',
# 'buses_congo': 'Dataset/buses/s_times3.txt',
# 'combi':'Dataset/results/combi_mb.csv',
# 'walking':'Dataset/results/dwc2.csv',
# 'search':'Dataset/results/NameLatLon.csv'
# }
csv_files = {
'search':'Dataset/results/NameLatLon.csv',
'metro_result': 'Dataset/results/res22.csv',
'bus_result': 'Dataset/buses/final_stop_times.csv',
'multi_graph':'Dataset/results/graph_edges.csv'
}
for table_name, file_path in csv_files.items():
df = pd.read_csv(file_path)
df.to_sql(table_name, engine, if_exists='replace', index=False)
print(f"Data from {file_path} has been uploaded to the {table_name} table.")