forked from rcap107/retrieve-merge-predict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug_performance.py
149 lines (112 loc) · 3.75 KB
/
debug_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# %%
import datetime as dt
import pickle
import random
import sys
from pathlib import Path
import numpy as np
import pandas as pd
import polars as pl
import polars.selectors as cs
from catboost import CatBoostRegressor
from sklearn.ensemble import HistGradientBoostingRegressor, RandomForestRegressor
from sklearn.impute import SimpleImputer
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OrdinalEncoder
from skrub import (
AggJoiner,
GapEncoder,
MinHashEncoder,
MultiAggJoiner,
TableVectorizer,
tabular_learner,
)
CACHE_PATH = "results/cache"
def prepare_skmodel():
inner_model = make_pipeline(
TableVectorizer(
high_cardinality=MinHashEncoder(),
low_cardinality=OrdinalEncoder(
handle_unknown="use_encoded_value", unknown_value=np.nan
),
n_jobs=32,
),
HistGradientBoostingRegressor(),
# RandomForestRegressor(n_jobs=32),
memory=CACHE_PATH,
)
return inner_model
def fit_predict_skmodel(X_train, X_valid, y_train, model):
model.fit(X_train, y_train)
return model.predict(X_valid)
def prepare_catboost(X):
defaults = {
"l2_leaf_reg": 0.01,
"od_type": "Iter",
"od_wait": 10,
"iterations": 100,
"verbose": 0,
}
cat_features = X.select(cs.string()).columns
parameters = dict(defaults)
parameters["random_seed"] = 42
return CatBoostRegressor(cat_features=cat_features, **parameters)
def prepare_table_catboost(table):
table = table.fill_null(value="null").fill_nan(value=np.nan)
return table.to_pandas()
def fit_predict_catboost(X_train, X_valid, y_train, model: CatBoostRegressor):
model.fit(X_train, y_train)
return model.predict(X_valid)
def merge(X_train, X_valid, cand_info):
path = cand_info["candidate_path"]
left_on = cand_info["left_on"]
right_on = cand_info["right_on"]
cnd_table = pl.read_parquet(path)
aggr = AggJoiner(
cnd_table, main_key=left_on, aux_key=right_on, operations=["mean", "mode"]
)
X_merged_train = aggr.fit_transform(X_train)
X_merged_valid = aggr.fit_transform(X_valid)
return X_merged_train, X_merged_valid
# %%
def test_multi(X, y, candidates, model):
assert model in ["catboost", "sklearn"]
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)
for k, cand_info in candidates:
X_merged_train, X_merged_valid = merge(X_train, X_valid, cand_info)
if model == "sklearn":
test_sklearn(X_merged_train, X_merged_valid, y_train, y_valid)
elif model == "catboost":
test_catboost(X_merged_train, X_merged_valid, y_train, y_valid)
# %%
def test_sklearn(X_merged_train, X_merged_valid, y_train, y_valid):
print("preparing sklearn")
inner_model = prepare_skmodel()
print("fitting")
y_predict = fit_predict_skmodel(
X_merged_train, X_merged_valid, y_train, inner_model
)
r2 = r2_score(y_valid, y_predict)
print(r2)
# %%
def test_catboost(X_merged_train, X_merged_valid, y_train, y_valid):
print("preparing catboost")
model = prepare_catboost(X_merged_train)
print("fitting")
_X_train, _X_valid = prepare_table_catboost(X_merged_train), prepare_table_catboost(
X_merged_valid
)
_y = y_train.to_pandas()
y_predict = fit_predict_catboost(_X_train, _X_valid, _y, model)
r2 = r2_score(y_valid, y_predict)
print(r2)
# %%
df = pl.read_parquet("company_employees-yadl-depleted.parquet")
X = df.drop("target")
y = df["target"]
candidates = pickle.load(open("candidates.pickle", "rb"))
model = "sklearn"
test_multi(X, y, candidates, "sklearn")
# %%