forked from rcap107/retrieve-merge-predict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_query_results.py
320 lines (283 loc) · 10.5 KB
/
analysis_query_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""
This script executes an exhaustive analysis of the query results produced by each retrieval method on the given data lake
to measure the overall statistics of the candidates returned by each.
The results of this script are saved in results/stats/ and are used for some of the plotting scripts.
"""
import datetime
import pickle
from pathlib import Path
import numpy as np
import polars as pl
import polars.selectors as cs
from joblib import load
from tqdm import tqdm
from src.utils.joining import execute_join_with_aggregation
DEFAULT_QUERY_RESULT_DIR = Path("results/query_results")
def load_query_result(yadl_version, index_name, tab_name, query_column, top_k):
query_result_path = "{}__{}__{}__{}.pickle".format(
yadl_version,
index_name,
tab_name,
query_column,
)
with open(
Path(DEFAULT_QUERY_RESULT_DIR, yadl_version, query_result_path), "rb"
) as fp:
query_result = pickle.load(fp)
query_result.select_top_k(top_k)
return query_result
def load_exact_matching(data_lake_version, table_name, column_name):
path = Path("data/metadata/_indices", data_lake_version)
iname = f"em_index_{table_name}_{column_name}.pickle"
with open(Path(path, iname), "rb") as fp:
d = load(fp)
counts = d["counts"]
return counts
def test_joining(
data_lake_version,
index_name,
table_name,
base_table,
query_column,
top_k,
aggregation,
):
query_result = load_query_result(
data_lake_version, index_name, table_name, query_column, 0
)
df_counts = load_exact_matching(
data_lake_version=data_lake_version,
table_name=table_name,
column_name=query_column,
)
query_result.select_top_k(top_k)
total_time = 0
list_stats = []
base_results = {
"retrieval_method": index_name,
"data_lake_version": data_lake_version,
"table_name": table_name,
"query_column": query_column,
"aggregation": aggregation,
"top_k": "",
"rank": "",
"cnd_table": "",
"cnd_column": "",
"containment": "",
"src_nrows": "",
"src_ncols": "",
"cnd_nrows": "",
"cnd_ncols": "",
"join_time": "",
}
for rank, (c_id, cand) in tqdm(
enumerate(query_result.candidates.items()), total=len(query_result.candidates)
):
r_dict = dict(base_results)
_, cnd_md, left_on, right_on = cand.get_join_information()
cand_table = pl.read_parquet(cnd_md["full_path"])
cont = df_counts.filter(
(pl.col("hash") == cnd_md["hash"]) & (pl.col("col") == right_on)
)["containment"].item()
start_time = datetime.datetime.now()
merge = execute_join_with_aggregation(
base_table,
cand_table,
left_on=left_on,
right_on=right_on,
how="left",
aggregation=aggregation,
)
end_time = datetime.datetime.now()
time_required = (end_time - start_time).total_seconds()
total_time += time_required
r_dict["cnd_table"] = cnd_md["hash"]
r_dict["cnd_column"] = right_on[0]
r_dict["containment"] = cont
r_dict["src_nrows"], r_dict["src_ncols"] = base_table.shape
r_dict["cnd_nrows"], r_dict["cnd_ncols"] = cand_table.shape
r_dict["join_time"] = time_required
r_dict["top_k"] = top_k
r_dict["rank"] = rank
list_stats.append(r_dict)
print(f"{data_lake_version} {table_name} {aggregation} {top_k} {total_time:.2f}")
return list_stats
def test_group_stats(
data_lake_version: str,
index_name: str,
table_name: str,
base_table: pl.DataFrame,
query_column: str,
top_k: int,
):
"""This function has the objective of estimating whether aggregation methods `first` and `mean` return the same results
or if there is a noticeable difference between the aggregations.
Args:
data_lake_version (str): The label of the data lake to evaluate.
index_name (str): Which retrieval method to use.
table_name (str): The name of the base table.
base_table (pl.DataFrame): The base table itself.
query_column (str): The column to be used as query and join key
top_k (int): How many candidates should be considered.
Returns:
list: A list containing the statistics for each candidate.
"""
query_result = load_query_result(
data_lake_version, index_name, table_name, query_column, 0
)
query_result.select_top_k(top_k)
total_time = 0
list_stats = []
for rank, (c_id, cand) in tqdm(
enumerate(query_result.candidates.items()),
total=len(query_result.candidates),
position=2,
desc="Candidate: ",
):
_, cnd_md, left_on, right_on = cand.get_join_information()
this_cand = pl.read_parquet(cnd_md["full_path"])
cand_table = this_cand.filter(pl.col(right_on).is_in(base_table[left_on]))
cat_cols = cand_table.select(cs.string()).columns
cat_cols = [_ for _ in cat_cols if _ not in right_on]
dict_stats = {
col: {
"data_lake_version": data_lake_version,
"table_name": table_name,
"cand_hash": cnd_md["hash"],
"cand_table": cnd_md["df_name"],
"col_name": col,
"in_mode": 0,
"equal_aggr": 0,
"nulls": 0,
"unique": 0,
"grp_size": 0,
}
for col in cat_cols
}
for col in tqdm(
cat_cols, total=len(cat_cols), position=1, leave=False, desc="Column: "
):
if col in right_on:
continue
subtable = cand_table.select(right_on + [col])
this_col_stats = {
"in_mode": [],
"equal_aggr": [],
"nulls": [],
"unique": [],
"grp_size": [],
}
n_gr = subtable.select(pl.col(right_on).n_unique()).item()
for gidx, group in tqdm(
subtable.group_by(right_on),
position=0,
total=n_gr,
leave=False,
desc="Group: ",
):
_stats = {}
_stats["nulls"] = group.select(pl.col(col).null_count()).item()
group = group.fill_null(f"null_{gidx[0]}")
_eq = group.select(
pl.col(col).mode().first().alias("mode")
== pl.col(col).first().alias("first")
).item()
_stats["equal_aggr"] = _eq
_stats["in_mode"] = group.select(
pl.col(col)
.value_counts(sort=True)
.struct.rename_fields(["val", "count"])
.struct.field("count")
.first()
/ len(group)
).item()
_stats["unique"] = group.select(
pl.col(col).n_unique().alias("unique")
).item()
_stats["grp_size"] = len(group)
for key, val in this_col_stats.items():
val.append(_stats[key])
# for key in this_col_stats:
# this_col_stats[key].append(_stats[key])
dict_stats[col].update(
{key: np.mean(value) for key, value in this_col_stats.items()}
)
list_stats += list(dict_stats.values())
return list_stats
if __name__ == "__main__":
data_lake_version = "open_data_us"
print("Data lake: ", data_lake_version)
if data_lake_version == "open_data_us":
# The name of the table will not be correct, fix the errors as they come
raise NotImplementedError
queries = [
("company_employees", "name"),
("housing_prices", "County"),
("us_elections", "county_name"),
("movies_large-depleted", "original_title"),
("us_accidents_2021", "County"),
("us_accidents_large", "County"),
("schools", "col_to_embed"),
]
base_path = Path("data/source_tables/open_data_us")
version = "open_data_us"
table_tag = "-depleted-open_data"
else:
queries = [
("company_employees", "col_to_embed"),
("housing_prices", "col_to_embed"),
("us_elections", "col_to_embed"),
("movies_large", "col_to_embed"),
("us_accidents_large", "col_to_embed"),
("us_accidents_2021", "col_to_embed"),
("us_county_population", "col_to_embed"),
]
base_path = base_path = Path("data/source_tables/yadl")
version = "yadl"
table_tag = "-yadl-depleted"
index_names = [
"minhash",
"minhash_hybrid",
"exact_matching",
# "starmie",
]
keys = ["index_name", "tab_name", "top_k", "join_time", "avg_cont"]
results = []
mode = "stats"
for query in tqdm(queries, total=len(queries), position=0, desc="Testing query: "):
tab, query_column = query
tqdm.write(tab)
for iname in tqdm(
index_names, total=len(index_names), position=1, desc="Testing index: "
):
tqdm.write(iname)
for k in [200]:
aggr = "first"
table_name = f"{tab}{table_tag}"
tqdm.write(f"{data_lake_version} {table_name}")
base_table = pl.read_parquet(
Path(f"data/source_tables/{version}/{table_name}.parquet")
)
params = {
"data_lake_version": data_lake_version,
"index_name": iname,
"table_name": table_name,
"base_table": base_table,
"query_column": query_column,
"top_k": k,
}
if mode == "stats":
params.update({"aggregation": aggr})
this_res = test_joining(**params)
results += this_res
elif mode == "group_stats":
col_stats = test_group_stats(**params)
results += col_stats
df = pl.from_dicts(results)
out_path = Path(
"results/stats", f"analysis_query_results_{data_lake_version}_{mode}_all.csv"
)
if out_path.exists():
df.write_csv(open(out_path, "a"), include_header=False)
else:
df.write_csv(open(out_path, "w"))