-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCategorical Data.py
114 lines (52 loc) · 1.71 KB
/
Categorical Data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# -*- coding: utf-8 -*-
"""
Spyder Editor
Author:Vatsal Mehta.
"""
import numpy as np
import pandas as pd
df=pd.read_csv('Data.csv')
print("\n")
print(df.columns)
print("\n")
print(df.shape)
print("\n")
print(df.corr())
print("\n")
print("Max Salary value is in row number: ",df['Salary'].idxmax()) #it will print the row number of maximum value in that column
print("Salary to age ratio is",df['Salary']/df['Age'])
print("\n")
print(df.isnull().sum())
print("\n")
print(df['Salary'].isnull())
#method 1
df.loc[4,'Salary']=40000
print(df)
#method 2
df['Age'].fillna(45,inplace=True)
print(df)
#method 3
df.dropna(thresh=3)
#Segregation of input and output variables
X=df.iloc[:,0:3].values
y=df.iloc[:,3].values
#method 4
from sklearn.impute import SimpleImputer
imputer=SimpleImputer(missing_values=np.nan,strategy='mean')
imputer.fit(X[:,1:3])
X[:,1:3]=imputer.transform(X[:,1:3])
print("\n")
"""Encoding Categorical Data for input data present in X variable """
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct=ColumnTransformer(transformers=[('encoder',OneHotEncoder(),[0])],remainder='passthrough')
X=np.array(ct.fit_transform(X))
print(X)
"""One hot Encoder basically splits one single column into multiple columns having numerical values"""
print("\n")
"""Encoding Categorical Data for output data present in y variable """
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
y=le.fit_transform(y)
print(y)
"""Label Encoder basically labels string values into numerical values and does not split the columns"""