-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocessing.py
144 lines (109 loc) · 4.58 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from transformers import RobertaTokenizer, RobertaModel
import pandas as pd
import json
import os
import torch
import tqdm
from torch import cuda
from torch import nn as nn
g = torch.Generator()
g.manual_seed(0)
directory = os.path.dirname(os.path.abspath(__file__))
dataset_name = 'ase_dataset_sept_19_2021.csv'
# dataset_name = 'huawei_sub_dataset.csv'
CODE_LINE_LENGTH = 256
use_cuda = cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.backends.cudnn.benchmark = True
def get_code_version(diff, added_version):
code = ''
lines = diff.splitlines()
for line in lines:
mark = '+'
if not added_version:
mark = '-'
if line.startswith(mark):
line = line[1:].strip()
if line.startswith(('//', '/**', '*', '*/', '#')):
continue
code = code + line + '\n'
return code
def get_input_and_mask(tokenizer, code_list):
inputs = tokenizer(code_list, padding=True, max_length=CODE_LINE_LENGTH, truncation=True, return_tensors="pt")
return inputs.data['input_ids'], inputs.data['attention_mask']
def get_file_embeddings(code_list, tokenizer, code_bert):
# process all lines in one
input_ids, attention_mask = get_input_and_mask(tokenizer, code_list)
with torch.no_grad():
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
embeddings = code_bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0, :]
embeddings = embeddings.tolist()
return embeddings
def write_embeddings_to_files(removed_code_list, added_code_list, url_list, tokenizer, code_bert):
removed_embeddings = get_file_embeddings(removed_code_list, tokenizer, code_bert)
added_embeddings = get_file_embeddings(added_code_list, tokenizer, code_bert)
url_to_removed_embeddings = {}
url_to_added_embeddings = {}
for index, url in enumerate(url_list):
if url not in url_to_removed_embeddings:
url_to_removed_embeddings[url] = []
url_to_added_embeddings[url] = []
url_to_removed_embeddings[url].append(removed_embeddings[index])
url_to_added_embeddings[url].append(added_embeddings[index])
url_to_data = {}
for url, removed_embeddings in url_to_removed_embeddings.items():
data = {}
added_embeddings = url_to_added_embeddings[url]
data['before'] = removed_embeddings
data['after'] = added_embeddings
url_to_data[url] = data
for url, data in url_to_data.items():
file_path = os.path.join(directory, '../file_data/' + url.replace('/', '_') + '.txt')
json.dump(data, open(file_path, 'w'))
def get_data():
tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
code_bert = RobertaModel.from_pretrained("microsoft/codebert-base", num_labels=2)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
code_bert = nn.DataParallel(code_bert)
code_bert.to(device)
code_bert.eval()
print("Reading dataset...")
df = pd.read_csv(dataset_name)
df = df[['commit_id', 'repo', 'partition', 'diff', 'label', 'PL', 'LOC_MOD', 'filename']]
items = df.to_numpy().tolist()
url_to_diff = {}
for item in items:
commit_id = item[0]
repo = item[1]
url = repo + '/commit/' + commit_id
diff = item[3]
if url not in url_to_diff:
url_to_diff[url] = []
url_to_diff[url].append(diff)
removed_code_list = []
added_code_list = []
url_list = []
for url, diff_list in tqdm.tqdm(url_to_diff.items()):
for i, diff in enumerate(diff_list):
removed_code = tokenizer.sep_token + get_code_version(diff, False)
added_code = tokenizer.sep_token + get_code_version(diff, True)
removed_code_list.append(removed_code)
added_code_list.append(added_code)
url_list.append(url)
if len(url_list) >= 200:
write_embeddings_to_files(removed_code_list, added_code_list, url_list, tokenizer, code_bert)
removed_code_list = []
added_code_list = []
url_list = []
write_embeddings_to_files(removed_code_list, added_code_list, url_list, tokenizer, code_bert)
def get_average_value(embeddings):
embeddings = torch.FloatTensor(embeddings)
sum_ = torch.sum(embeddings, dim=0)
mean_ = torch.div(sum_, embeddings.shape[0])
mean_ = mean_.detach()
mean_ = mean_.cpu()
return mean_
# get_data()