-
Notifications
You must be signed in to change notification settings - Fork 2
/
neighbour_ensemble.py
195 lines (160 loc) · 6.66 KB
/
neighbour_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import ensemble_classifier
import utils
import csv
import json
from torch import nn
from numpy import dot
from numpy.linalg import norm
from tqdm import tqdm
dataset_name = 'ase_dataset_sept_19_2021.csv'
cos = nn.CosineSimilarity(dim=0, eps=1e-6)
def calculate_similarity(test_feature, train_feature):
return cos(test_feature, train_feature).item()
def find_neighbour(test_url, url_to_features, url_data, label_data, url_to_pl):
test_feature = url_to_features[test_url]
test_pl = url_to_pl[test_url]
data = {}
# store url and similarity score
pos_list = []
neg_list = []
for i, url in enumerate(url_data['train']):
if url_to_pl[url] != test_pl:
continue
if label_data['train'][i] == 1:
pos_list.append((url, calculate_similarity(test_feature, url_to_features[url])))
else:
neg_list.append((url, calculate_similarity(test_feature, url_to_features[url])))
pos_neighbour = sorted(pos_list, key=lambda x: x[1], reverse=True)[:10]
neg_neighbour = sorted(neg_list, key=lambda x: x[1], reverse=True)[:10]
data['pos'] = pos_neighbour
data['neg'] = neg_neighbour
return data
def process():
train_feature_path = [
'features/feature_variant_1_train.txt',
'features/feature_variant_2_train.txt',
'features/feature_variant_3_train.txt',
'features/feature_variant_5_train.txt',
'features/feature_variant_6_train.txt',
'features/feature_variant_7_train.txt',
'features/feature_variant_8_train.txt'
]
val_feature_path = [
'features/feature_variant_1_val.txt',
'features/feature_variant_2_val.txt',
'features/feature_variant_3_val.txt',
'features/feature_variant_5_val.txt',
'features/feature_variant_6_val.txt',
'features/feature_variant_7_val.txt',
'features/feature_variant_8_val.txt'
]
test_java_feature_path = [
'features/feature_variant_1_test_java.txt',
'features/feature_variant_2_test_java.txt',
'features/feature_variant_3_test_java.txt',
'features/feature_variant_5_test_java.txt',
'features/feature_variant_6_test_java.txt',
'features/feature_variant_7_test_java.txt',
'features/feature_variant_8_test_java.txt'
]
test_python_feature_path = [
'features/feature_variant_1_test_python.txt',
'features/feature_variant_2_test_python.txt',
'features/feature_variant_3_test_python.txt',
'features/feature_variant_5_test_python.txt',
'features/feature_variant_6_test_python.txt',
'features/feature_variant_7_test_python.txt',
'features/feature_variant_8_test_python.txt'
]
print("Reading data...")
url_to_features = {}
print("Reading train data")
url_to_features.update(ensemble_classifier.read_feature_list(train_feature_path, reshape=True))
# print("Reading val data")
# url_to_features.update(ensemble_classifier.read_feature_list(val_feature_path))
print("Reading test java data")
url_to_features.update(ensemble_classifier.read_feature_list(test_java_feature_path, reshape=True))
# print("Reading test python data")
# url_to_features.update(ensemble_classifier.read_feature_list(test_python_feature_path))
print("Finish reading")
url_data, label_data, url_to_pl, url_to_label = utils.get_data(dataset_name, need_pl=True)
url_to_neighbor = {}
count = 0
for i, url in enumerate(url_data['test_java']):
# if label_data['test_java'][i] == 0:
# continue
count += 1
if count % 100 == 0:
print("finish: {}/{}".format(count, len(url_data['test_java'])))
# print(url)
url_to_neighbor[url] = find_neighbour(url, url_to_features, url_data, label_data, url_to_pl)
# if count == 10:
# break
json.dump(url_to_neighbor, open('url_to_neighbour_java.txt', 'w'))
def calculate_norm_and_dot():
train_feature_path = [
'features/feature_variant_1_train.txt',
'features/feature_variant_2_train.txt',
'features/feature_variant_3_train.txt',
'features/feature_variant_5_train.txt',
'features/feature_variant_6_train.txt',
'features/feature_variant_7_train.txt',
'features/feature_variant_8_train.txt'
]
val_feature_path = [
'features/feature_variant_1_val.txt',
'features/feature_variant_2_val.txt',
'features/feature_variant_3_val.txt',
'features/feature_variant_5_val.txt',
'features/feature_variant_6_val.txt',
'features/feature_variant_7_val.txt',
'features/feature_variant_8_val.txt'
]
test_java_feature_path = [
'features/feature_variant_1_test_java.txt',
'features/feature_variant_2_test_java.txt',
'features/feature_variant_3_test_java.txt',
'features/feature_variant_5_test_java.txt',
'features/feature_variant_6_test_java.txt',
'features/feature_variant_7_test_java.txt',
'features/feature_variant_8_test_java.txt'
]
test_python_feature_path = [
'features/feature_variant_1_test_python.txt',
'features/feature_variant_2_test_python.txt',
'features/feature_variant_3_test_python.txt',
'features/feature_variant_5_test_python.txt',
'features/feature_variant_6_test_python.txt',
'features/feature_variant_7_test_python.txt',
'features/feature_variant_8_test_python.txt'
]
print("Reading data...")
url_to_features = {}
# print("Reading train data")
# url_to_features.update(ensemble_classifier.read_feature_list(train_feature_path))
print("Reading val data")
url_to_features.update(ensemble_classifier.read_feature_list(val_feature_path, reshape=True))
# print("Reading test java data")
# url_to_features.update(ensemble_classifier.read_feature_list(test_java_feature_path))
# print("Reading test python data")
# url_to_features.update(ensemble_classifier.read_feature_list(test_python_feature_path))
# calculate dot and norm preemptively
data = {}
norms = {}
print("Calculating norm...")
for url, features in tqdm(url_to_features.items()):
norms[url] = norm(features)
url_list = list(url_to_features.keys())
print("Calculating dot...")
dots = {}
for i in tqdm(range(len(url_list))):
for j in range(len(url_list)):
if i < j:
a = url_to_features[url_list[i]]
b = url_to_features[url_list[j]]
dots[url_list[i] + url_list[j]] = dot(a, b)
data['norms'] = norms
data['dots'] = dots
json.dump(data, open('url_consine_data.txt', 'w'))
if __name__ == '__main__':
process()