-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_demo.py
70 lines (63 loc) · 3.06 KB
/
evaluation_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from pathlib import Path
from json import load as json_load, dump as json_save
import torch
from transformers import ElectraTokenizer
from common.sys.const import EVALUATE_INPUT_PATH, EVALUATE_OUTPUT_PATH, EVALUATE_TOKENIZER_PATH, EVALUATE_WEIGHT_DIR
from common.sys.convert import string_to_text_instance, equation_to_execution
from common.sys.key import ANSWER, EQUATION, QUESTION, EXECUTION
from evaluate import Executor
from model import EPT
from solver import execution_to_python_code
# for DEMO
from termcolor import colored
import os
if __name__ == '__main__':
# Load model from './weights/checkpoint' using model.EPT.create_or_load()
model = EPT.create_or_load(str(EVALUATE_WEIGHT_DIR.absolute()))
# Restore tokenizer from pickle
tokenizer: ElectraTokenizer = torch.load(str(EVALUATE_TOKENIZER_PATH.absolute()))
# Move model to GPU if available
if torch.cuda.is_available():
model = model.cuda()
# Set model as evaluation mode
model.eval()
# Read '/home/agc2021/dataset/problemsheet.json' and store (key, text) pairs into problems
EVALUATE_INPUT_PATH = '/home/image/MOO/resources/problemsheet.sample29.json'
with Path(EVALUATE_INPUT_PATH).open('rt', encoding='utf-8-sig') as fp:
problems = json_load(fp)
# Initialize code executor
executor = Executor(time_limit=0.5)
try:
# Initialize answers as dict
answers = {}
# For each text in problems
for key, text in problems.items():
os.system('clear')
print("Problem:");
print(colored(text[QUESTION], 'yellow'))
print('MOO language:')
# Transform text into common.model.types.Text instance
instance = string_to_text_instance(text[QUESTION], tokenizer)
word_info = instance.word_info[0]
# Generate equation using model.forward()
equation = model.forward(text=instance, beam=5)['expression']
# Transform equation into a list of common.solver.types.Execution
execution = equation_to_execution(equation, batch_index=0, word_size=len(word_info))
for plan in execution:
print(colored(plan, 'green'))
input("press enter to transplie Python code")
# /* The following two lines will be shared with train_model.py, check_dataset.py */
# Transform equation into python code using solver.execution_to_python_code()
code = execution_to_python_code(execution, word_info, indent=4)
print(colored(code, 'cyan'))
input("Press enter to continue..")
# Execute python code with timeout (0.5s) and get an answer (type: string)
code, answer = executor.run(code)
# Set answers[key] as {'answer': answer, 'equation': code}
answers[key] = {ANSWER: answer, EQUATION: code}
# Dump answers into './answersheet.json'
with EVALUATE_OUTPUT_PATH.open('w+t', encoding='utf-8') as fp:
json_save(answers, fp, ensure_ascii=False)
finally:
# Finalize everything
executor.close()