-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathkv_ftl.c
1079 lines (880 loc) · 28.6 KB
/
kv_ftl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/ktime.h>
#include <linux/highmem.h>
#include <linux/sched/clock.h>
#include "nvmev.h"
#include "kv_ftl.h"
static const struct allocator_ops append_only_ops = {
.init = append_only_allocator_init,
.allocate = append_only_allocate,
.kill = append_only_kill,
};
static const struct allocator_ops bitmap_ops = {
.init = bitmap_allocator_init,
.allocate = bitmap_allocate,
.kill = bitmap_kill,
};
static inline unsigned long long __get_wallclock(void)
{
return cpu_clock(nvmev_vdev->config.cpu_nr_dispatcher);
}
static size_t __cmd_io_size(struct nvme_rw_command *cmd)
{
NVMEV_DEBUG("%d lba %llu length %d, %llx %llx\n", cmd->opcode, cmd->slba, cmd->length,
cmd->prp1, cmd->prp2);
return (cmd->length + 1) << LBA_BITS;
}
static unsigned int cmd_key_length(struct nvme_kv_command cmd)
{
if (cmd.common.opcode == nvme_cmd_kv_store) {
return cmd.kv_store.key_len + 1;
} else if (cmd.common.opcode == nvme_cmd_kv_retrieve) {
return cmd.kv_retrieve.key_len + 1;
} else if (cmd.common.opcode == nvme_cmd_kv_delete) {
return cmd.kv_delete.key_len + 1;
} else {
return cmd.kv_store.key_len + 1;
}
}
static unsigned int cmd_value_length(struct nvme_kv_command cmd)
{
if (cmd.common.opcode == nvme_cmd_kv_store) {
return cmd.kv_store.value_len << 2;
} else if (cmd.common.opcode == nvme_cmd_kv_retrieve) {
return cmd.kv_retrieve.value_len << 2;
} else {
return cmd.kv_store.value_len << 2;
}
}
/* Return the time to complete */
static unsigned long long __schedule_io_units(int opcode, unsigned long lba, unsigned int length,
unsigned long long nsecs_start)
{
unsigned int io_unit_size = 1 << nvmev_vdev->config.io_unit_shift;
unsigned int io_unit =
(lba >> (nvmev_vdev->config.io_unit_shift - LBA_BITS)) % nvmev_vdev->config.nr_io_units;
int nr_io_units = min(nvmev_vdev->config.nr_io_units, DIV_ROUND_UP(length, io_unit_size));
unsigned long long latest; /* Time of completion */
unsigned int delay = 0;
unsigned int latency = 0;
unsigned int trailing = 0;
if (opcode == nvme_cmd_write || opcode == nvme_cmd_kv_store ||
opcode == nvme_cmd_kv_batch) {
delay = nvmev_vdev->config.write_delay;
latency = nvmev_vdev->config.write_time;
trailing = nvmev_vdev->config.write_trailing;
} else if (opcode == nvme_cmd_read || opcode == nvme_cmd_kv_retrieve) {
delay = nvmev_vdev->config.read_delay;
latency = nvmev_vdev->config.read_time;
trailing = nvmev_vdev->config.read_trailing;
}
latest = max(nsecs_start, nvmev_vdev->io_unit_stat[io_unit]) + delay;
do {
latest += latency;
nvmev_vdev->io_unit_stat[io_unit] = latest;
if (nr_io_units-- > 0) {
nvmev_vdev->io_unit_stat[io_unit] += trailing;
}
length -= min(length, io_unit_size);
if (++io_unit >= nvmev_vdev->config.nr_io_units)
io_unit = 0;
} while (length > 0);
return latest;
}
static unsigned long long __schedule_flush(struct nvmev_request *req)
{
unsigned long long latest = 0;
int i;
for (i = 0; i < nvmev_vdev->config.nr_io_units; i++) {
latest = max(latest, nvmev_vdev->io_unit_stat[i]);
}
return latest;
}
/* KV-SSD Mapping Management */
static size_t allocate_mem_offset(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd)
{
if (cmd.common.opcode == nvme_cmd_kv_store) {
u64 length_bytes = cmd_value_length(cmd);
size_t offset;
offset = kv_ftl->allocator_ops.allocate(length_bytes, NULL);
if (offset == -1) {
NVMEV_ERROR("mem alloc failed");
return 0;
} else {
NVMEV_DEBUG("allocate memory offset %lu for %u %u\n", offset,
cmd_key_length(cmd), cmd_value_length(cmd));
return offset;
}
} else {
NVMEV_ERROR("Couldn't allocate mem offset %d", cmd.common.opcode);
return 0;
}
}
static size_t allocate_mem_offset_by_length(struct kv_ftl *kv_ftl, int val_len)
{
u64 length_bytes = val_len;
size_t offset;
offset = kv_ftl->allocator_ops.allocate(length_bytes, NULL);
if (offset == -1) {
NVMEV_ERROR("mem alloc failed");
return 0;
} else {
NVMEV_DEBUG("allocate memory offset %lu for %u\n", offset, val_len);
return offset;
}
}
static unsigned int get_hash_slot(struct kv_ftl *kv_ftl, char *key, u32 key_len)
{
return hash_function(key, key_len) % kv_ftl->hash_slots;
}
static void chain_mapping(struct kv_ftl *kv_ftl, unsigned int prev, unsigned int slot)
{
kv_ftl->kv_mapping_table[prev].next_slot = slot;
}
static unsigned int find_next_slot(struct kv_ftl *kv_ftl, int original_slot, int *prev_slot)
{
unsigned int ret_slot = original_slot;
// 1. Find the tail of the link.
unsigned int tail = original_slot;
unsigned int prevs = -1;
while (kv_ftl->kv_mapping_table[tail].mem_offset != -1) {
prevs = tail;
tail = kv_ftl->kv_mapping_table[tail].next_slot;
if (tail == -1) break;
}
ret_slot = prevs;
*prev_slot = prevs;
// 2. Search the next available slots starting from the tail.
while (kv_ftl->kv_mapping_table[ret_slot].mem_offset != -1) {
ret_slot++;
if (ret_slot >= kv_ftl->hash_slots)
ret_slot = 0;
}
// *prev_slot = original_slot;
if (prev_slot < 0) {
NVMEV_ERROR("Prev slot less than 0\n");
}
NVMEV_DEBUG("Collision at slot %d, found new slot %u\n", original_slot, ret_slot);
if (ret_slot - original_slot > 3)
NVMEV_DEBUG("Slot difference: %d\n", ret_slot - original_slot);
return ret_slot;
}
static unsigned int new_mapping_entry(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd,
size_t val_offset)
{
unsigned int slot = -1;
unsigned int prev_slot;
BUG_ON(val_offset < 0 || val_offset >= nvmev_vdev->config.storage_size);
slot = get_hash_slot(kv_ftl, cmd.kv_store.key, cmd_key_length(cmd));
prev_slot = -1;
if (kv_ftl->kv_mapping_table[slot].mem_offset != -1) {
NVMEV_DEBUG("Collision\n");
slot = find_next_slot(kv_ftl, slot, &prev_slot);
}
if (slot < 0 || slot >= kv_ftl->hash_slots) {
NVMEV_ERROR("slot < 0 || slot >= kv_ftl->hash_slots\n");
}
memcpy(kv_ftl->kv_mapping_table[slot].key, cmd.kv_store.key, cmd.kv_store.key_len + 1);
kv_ftl->kv_mapping_table[slot].mem_offset = val_offset;
kv_ftl->kv_mapping_table[slot].length = cmd_value_length(cmd);
/* hash chaining */
if (prev_slot != -1) {
NVMEV_DEBUG("Linking slot %d to new slot %d", prev_slot, slot);
chain_mapping(kv_ftl, prev_slot, slot);
}
NVMEV_DEBUG("New mapping entry key %s offset %lu length %u slot %u\n", cmd.kv_store.key,
val_offset, cmd_value_length(cmd), slot);
return 0;
}
static unsigned int new_mapping_entry_by_key(struct kv_ftl *kv_ftl, unsigned char *key, int key_len,
int val_len, size_t val_offset)
{
unsigned int slot = -1;
unsigned int prev_slot;
BUG_ON(val_offset < 0 || val_offset >= nvmev_vdev->config.storage_size);
slot = get_hash_slot(kv_ftl, key, key_len);
prev_slot = -1;
if (kv_ftl->kv_mapping_table[slot].mem_offset != -1) {
NVMEV_DEBUG("Collision\n");
slot = find_next_slot(kv_ftl, slot, &prev_slot);
}
if (slot < 0 || slot >= kv_ftl->hash_slots) {
NVMEV_ERROR("slot < 0 || slot >= kv_ftl->hash_slots\n");
}
memcpy(kv_ftl->kv_mapping_table[slot].key, key, key_len);
kv_ftl->kv_mapping_table[slot].mem_offset = val_offset;
kv_ftl->kv_mapping_table[slot].length = val_len;
/* hash chaining */
if (prev_slot != -1) {
NVMEV_DEBUG("Linking slot %d to new slot %d", prev_slot, slot);
chain_mapping(kv_ftl, prev_slot, slot);
}
NVMEV_DEBUG("New mapping entry key %s offset %lu length %u slot %u\n", key, val_offset,
val_len, slot);
return 0;
}
static unsigned int update_mapping_entry(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd)
{
unsigned int slot = 0;
bool found = false;
// u64 t0, t1;
u32 count = 0;
// t0 = ktime_get_ns();
slot = get_hash_slot(kv_ftl, cmd.kv_store.key, cmd_key_length(cmd));
// t1 = ktime_get_ns();
// printk("Hashing took %llu\n", t1-t0);
while (kv_ftl->kv_mapping_table[slot].mem_offset != -1) {
NVMEV_DEBUG("Comparing %s | %.*s\n", cmd.kv_store.key, cmd_key_length(cmd),
kv_ftl->kv_mapping_table[slot].key);
count++;
if (count > 10) {
NVMEV_ERROR("Searched %u times", count);
// break;
}
if (memcmp(cmd.kv_store.key, kv_ftl->kv_mapping_table[slot].key,
cmd_key_length(cmd)) == 0) {
NVMEV_DEBUG("1 Found\n");
found = true;
break;
}
slot = kv_ftl->kv_mapping_table[slot].next_slot;
if (slot == -1)
break;
// t1 = ktime_get_ns();
// printk("Comparison took %llu", t1-t0);
}
if (found) {
NVMEV_DEBUG("Updating mapping length %lu to %u for key %s\n",
kv_ftl->kv_mapping_table[slot].length, cmd_value_length(cmd),
cmd.kv_store.key);
kv_ftl->kv_mapping_table[slot].length = cmd_value_length(cmd);
}
if (!found) {
NVMEV_ERROR("No mapping found for key %s\n", cmd.kv_store.key);
return 1;
}
return 0;
}
static struct mapping_entry get_mapping_entry(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd)
{
struct mapping_entry mapping;
// char *key = NULL;
unsigned int slot = 0;
bool found = false;
// u64 t0, t1;
u32 count = 0;
memset(&mapping, -1, sizeof(struct mapping_entry)); // init mapping
// t0 = ktime_get_ns();
slot = get_hash_slot(kv_ftl, cmd.kv_store.key, cmd_key_length(cmd));
// t1 = ktime_get_ns();
// printk("Hashing took %llu\n", t1-t0);
while (kv_ftl->kv_mapping_table[slot].mem_offset != -1) {
NVMEV_DEBUG("Comparing %s | %.*s\n", cmd.kv_store.key, cmd_key_length(cmd),
kv_ftl->kv_mapping_table[slot].key);
count++;
if (count > 10) {
NVMEV_DEBUG("Searched %u times", count);
// break;
}
if (memcmp(cmd.kv_store.key, kv_ftl->kv_mapping_table[slot].key,
cmd_key_length(cmd)) == 0) {
NVMEV_DEBUG("1 Found\n");
found = true;
break;
}
slot = kv_ftl->kv_mapping_table[slot].next_slot;
if (slot == -1)
break;
NVMEV_DEBUG("Next slot %d", slot);
// t1 = ktime_get_ns();
// printk("Comparison took %llu", t1-t0);
}
if (found) {
NVMEV_DEBUG("2 Found\n");
memcpy(mapping.key, kv_ftl->kv_mapping_table[slot].key, cmd_key_length(cmd));
mapping.mem_offset = kv_ftl->kv_mapping_table[slot].mem_offset;
mapping.next_slot = kv_ftl->kv_mapping_table[slot].next_slot;
mapping.length = kv_ftl->kv_mapping_table[slot].length;
}
if (!found)
NVMEV_DEBUG("No mapping found for key %s\n", cmd.kv_store.key);
else
NVMEV_DEBUG("Returning mapping %lu length %lu for key %s\n", mapping.mem_offset,
mapping.length, cmd.kv_store.key);
return mapping;
}
static struct mapping_entry get_mapping_entry_by_key(struct kv_ftl *kv_ftl, unsigned char *key,
int key_len)
{
struct mapping_entry mapping;
// char *key = NULL;
unsigned int slot = 0;
bool found = false;
// u64 t0, t1;
u32 count = 0;
memset(&mapping, -1, sizeof(struct mapping_entry)); // init mapping
// t0 = ktime_get_ns();
slot = get_hash_slot(kv_ftl, key, key_len);
// t1 = ktime_get_ns();
// printk("Hashing took %llu\n", t1-t0);
while (kv_ftl->kv_mapping_table[slot].mem_offset != -1) {
NVMEV_DEBUG("Comparing %s | %.*s\n", key, key_len,
kv_ftl->kv_mapping_table[slot].key);
count++;
if (count > 10) {
NVMEV_DEBUG("Searched %u times", count);
// break;
}
if (memcmp(key, kv_ftl->kv_mapping_table[slot].key, key_len) == 0) {
NVMEV_DEBUG("1 Found\n");
found = true;
break;
}
slot = kv_ftl->kv_mapping_table[slot].next_slot;
if (slot == -1)
break;
NVMEV_DEBUG("Next slot %d", slot);
// t1 = ktime_get_ns();
// printk("Comparison took %llu", t1-t0);
}
if (found) {
NVMEV_DEBUG("2 Found\n");
memcpy(mapping.key, kv_ftl->kv_mapping_table[slot].key, key_len);
mapping.mem_offset = kv_ftl->kv_mapping_table[slot].mem_offset;
mapping.next_slot = kv_ftl->kv_mapping_table[slot].next_slot;
mapping.length = kv_ftl->kv_mapping_table[slot].length;
}
if (!found)
NVMEV_DEBUG("No mapping found for key %s\n", key);
else
NVMEV_DEBUG("Returning mapping %lu length %lu for key %s\n", mapping.mem_offset,
mapping.length, key);
return mapping;
}
static struct mapping_entry delete_mapping_entry(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd)
{
struct mapping_entry mapping;
// char *key = NULL;
unsigned int slot = 0;
bool found = false;
// u64 t0, t1;
u32 count = 0;
memset(&mapping, -1, sizeof(struct mapping_entry)); // init mapping
// t0 = ktime_get_ns();
slot = get_hash_slot(kv_ftl, cmd.kv_store.key, cmd_key_length(cmd));
// t1 = ktime_get_ns();
// printk("Hashing took %llu\n", t1-t0);
while (kv_ftl->kv_mapping_table[slot].mem_offset != -1) {
NVMEV_DEBUG("Comparing %s | %.*s\n", cmd.kv_store.key, cmd_key_length(cmd),
kv_ftl->kv_mapping_table[slot].key);
count++;
if (count > 10) {
NVMEV_DEBUG("Searched %u times", count);
// break;
}
if (memcmp(cmd.kv_store.key, kv_ftl->kv_mapping_table[slot].key,
cmd_key_length(cmd)) == 0) {
NVMEV_DEBUG("1 Found\n");
found = true;
break;
}
slot = kv_ftl->kv_mapping_table[slot].next_slot;
if (slot == -1)
break;
NVMEV_DEBUG("Next slot %d", slot);
// t1 = ktime_get_ns();
// printk("Comparison took %llu", t1-t0);
}
if (found) {
NVMEV_DEBUG("2 Found\n");
memset(&(kv_ftl->kv_mapping_table[slot]), -1, sizeof(struct mapping_entry));
}
if (!found)
NVMEV_DEBUG("No mapping found for key %s\n", cmd.kv_store.key);
else
NVMEV_DEBUG("Deleting mapping %lu length %lu for key %s\n", mapping.mem_offset,
mapping.length, cmd.kv_store.key);
return mapping;
}
/* KV-SSD IO */
/*
* 1. find mapping_entry
* if kv_store
* if mapping_entry exist -> write to mem_offset
* else -> allocate mem_offset and write
* else if kv_retrieve
* if mapping_entry exist -> read from mem_offset
* else -> key doesn't exist!
*/
static unsigned int __do_perform_kv_io(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd,
unsigned int *status)
{
size_t offset;
size_t length, remaining;
int prp_offs = 0;
int prp2_offs = 0;
u64 paddr;
u64 *paddr_list = NULL;
size_t mem_offs = 0;
size_t new_offset = 0;
struct mapping_entry entry;
int is_insert = 0;
entry = get_mapping_entry(kv_ftl, cmd);
offset = entry.mem_offset;
length = cmd_value_length(cmd);
if (cmd.common.opcode == nvme_cmd_kv_store) {
if (entry.mem_offset == -1) { // entry doesn't exist -> is insert
new_offset = allocate_mem_offset(kv_ftl, cmd);
offset = new_offset;
is_insert = 1; // is insert
NVMEV_DEBUG("kv_store insert %s %lu\n", cmd.kv_store.key, offset);
} else {
NVMEV_DEBUG("kv_store update %s %lu\n", cmd.kv_store.key, offset);
if (length != entry.length) {
if (length <= SMALL_LENGTH && entry.length <= SMALL_LENGTH) {
is_insert = 2; // is update with different length;
} else {
NVMEV_ERROR("Length size invalid!!");
}
}
}
} else if (cmd.common.opcode == nvme_cmd_kv_retrieve) {
if (entry.mem_offset == -1) { // kv pair doesn't exist
NVMEV_DEBUG("kv_retrieve %s no exist\n", cmd.kv_store.key);
*status = KV_ERR_KEY_NOT_EXIST;
return 0; // dev_status_code for KVS_ERR_KEY_NOT_EXIST
} else {
length = min(entry.length, length);
NVMEV_DEBUG("kv_retrieve %s exist - length %ld, offset %lu\n",
cmd.kv_store.key, length, offset);
}
} else if (cmd.common.opcode == nvme_cmd_kv_exist) {
if (entry.mem_offset == -1) { // kv pair doesn't exist
NVMEV_DEBUG("kv_exist %s no exist\n", cmd.kv_store.key);
*status = KV_ERR_KEY_NOT_EXIST;
return 0; // dev_status_code for KVS_ERR_KEY_NOT_EXIST
} else {
NVMEV_DEBUG("kv_exist %s exist\n", cmd.kv_store.key);
return 0;
}
} else if (cmd.common.opcode == nvme_cmd_kv_delete) {
if (entry.mem_offset == -1) { // kv pair doesn't exist
NVMEV_DEBUG("kv_delete %s no exist\n", cmd.kv_store.key);
*status = KV_ERR_KEY_NOT_EXIST;
return 0; // dev_status_code for KVS_ERR_KEY_NOT_EXIST
} else {
NVMEV_DEBUG("kv_delete %s exist - length %ld, offset %lu\n",
cmd.kv_store.key, length, offset);
delete_mapping_entry(kv_ftl, cmd);
return 0;
}
} else {
NVMEV_ERROR("Cmd type %d, for key %s but not store or retrieve. return 0\n",
cmd.common.opcode, cmd.kv_store.key);
return 0;
}
remaining = length;
while (remaining) {
size_t io_size;
void *vaddr;
mem_offs = 0;
prp_offs++;
if (prp_offs == 1) {
paddr = kv_io_cmd_value_prp(cmd, 1);
} else if (prp_offs == 2) {
paddr = kv_io_cmd_value_prp(cmd, 2);
if (remaining > PAGE_SIZE) {
paddr_list = kmap_atomic_pfn(PRP_PFN(paddr)) +
(paddr & PAGE_OFFSET_MASK);
paddr = paddr_list[prp2_offs++];
}
} else {
paddr = paddr_list[prp2_offs++];
}
vaddr = kmap_atomic_pfn(PRP_PFN(paddr));
io_size = min_t(size_t, remaining, PAGE_SIZE);
if (paddr & PAGE_OFFSET_MASK) { // 일반 block io면 언제 여기에 해당?
mem_offs = paddr & PAGE_OFFSET_MASK;
if (io_size + mem_offs > PAGE_SIZE)
io_size = PAGE_SIZE - mem_offs;
}
if (cmd.common.opcode == nvme_cmd_kv_store) {
memcpy(nvmev_vdev->storage_mapped + offset, vaddr + mem_offs, io_size);
} else if (cmd.common.opcode == nvme_cmd_kv_retrieve) {
memcpy(vaddr + mem_offs, nvmev_vdev->storage_mapped + offset, io_size);
} else {
NVMEV_ERROR("Wrong KV Command passed to NVMeVirt!!\n");
}
kunmap_atomic(vaddr);
remaining -= io_size;
offset += io_size;
}
if (paddr_list != NULL)
kunmap_atomic(paddr_list);
if (is_insert == 1) { // need to make new mapping
new_mapping_entry(kv_ftl, cmd, new_offset);
} else if (is_insert == 2) {
update_mapping_entry(kv_ftl, cmd);
}
if (cmd.common.opcode == nvme_cmd_kv_retrieve)
return length;
return 0;
}
static unsigned int __do_perform_kv_batched_io(struct kv_ftl *kv_ftl, int opcode, char *key,
int key_len, char *value, int val_len)
{
size_t offset;
size_t new_offset = 0;
struct mapping_entry entry;
int is_insert = 0;
entry = get_mapping_entry_by_key(kv_ftl, key, key_len);
offset = entry.mem_offset;
if (opcode == nvme_cmd_kv_store) {
if (entry.mem_offset == -1) { // entry doesn't exist -> is insert
NVMEV_DEBUG("kv_store insert %s\n", key);
new_offset = allocate_mem_offset_by_length(kv_ftl, val_len);
offset = new_offset;
is_insert = 1; // is insert
} else {
NVMEV_DEBUG("kv_store update %s %lu\n", key, offset);
if (val_len != entry.length) {
if (val_len <= SMALL_LENGTH && entry.length <= SMALL_LENGTH) {
is_insert = 2; // is update with different length;
} else {
NVMEV_ERROR("Length size invalid!!");
}
}
}
} else {
NVMEV_ERROR("Cmd type %d, for key %s but not store or retrieve. return 0\n", opcode,
key);
return 0;
}
NVMEV_DEBUG("Value write length %d to position %lu %s\n", val_len, offset, value);
memcpy(nvmev_vdev->storage_mapped + offset, value, val_len);
if (is_insert == 1) { // need to make new mapping
new_mapping_entry_by_key(kv_ftl, key, key_len, val_len, new_offset);
}
// else if (is_insert == 2) {
// update_mapping_entry(cmd);
// }
return 0;
}
static unsigned int __do_perform_kv_batch(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd,
unsigned int *status)
{
size_t offset;
size_t length, remaining;
int prp_offs = 0;
int prp2_offs = 0;
u64 paddr;
u64 *paddr_list = NULL;
size_t mem_offs = 0;
int i;
struct payload_format *payload;
char *buffer = NULL;
char key[20];
char *value;
int sub_cmd_cnt;
int opcode, sub_len, key_len, val_len, payload_offset = 0;
sub_cmd_cnt = cmd.kv_batch.rsvd4;
length = cmd_value_length(cmd);
value = kmalloc(4097, GFP_KERNEL);
buffer = kmalloc(length, GFP_KERNEL);
//printk("kv_batch %d %d", sub_cmd_cnt, length);
remaining = length;
offset = 0;
while (remaining) {
size_t io_size;
void *vaddr;
mem_offs = 0;
prp_offs++;
if (prp_offs == 1) {
paddr = kv_io_cmd_value_prp(cmd, 1);
} else if (prp_offs == 2) {
paddr = kv_io_cmd_value_prp(cmd, 2);
if (remaining > PAGE_SIZE) {
paddr_list = kmap_atomic_pfn(PRP_PFN(paddr)) +
(paddr & PAGE_OFFSET_MASK);
paddr = paddr_list[prp2_offs++];
}
} else {
paddr = paddr_list[prp2_offs++];
}
vaddr = kmap_atomic_pfn(PRP_PFN(paddr));
io_size = min_t(size_t, remaining, PAGE_SIZE);
if (paddr & PAGE_OFFSET_MASK) { // 일반 block io면 언제 여기에 해당?
mem_offs = paddr & PAGE_OFFSET_MASK;
if (io_size + mem_offs > PAGE_SIZE)
io_size = PAGE_SIZE - mem_offs;
}
NVMEV_DEBUG("Value write length %lu to position %lu, io size: %ld, mem_off: %lu\n",
remaining, offset, io_size, mem_offs);
memcpy(buffer + offset, vaddr + mem_offs, io_size);
kunmap_atomic(vaddr);
remaining -= io_size;
offset += io_size;
}
/* perform KV IO for sub-payload */
payload = (struct payload_format *)buffer;
payload_offset = ALIGN_LEN;
for (i = 0; i < sub_cmd_cnt; i++) {
memset(key, 0, 20);
memset(value, 0, 4097);
sub_len = 0;
opcode = payload->batch_head.attr[i].opcode;
key_len = payload->batch_head.attr[i].keySize;
val_len = payload->batch_head.attr[i].valueSize;
sub_len += ((key_len - 1) / ALIGN_LEN + 1) * ALIGN_LEN;
sub_len += ((val_len - 1) / ALIGN_LEN + 1) * ALIGN_LEN;
sub_len += ALIGN_LEN;
memcpy(key, payload->sub_payload + payload_offset, key_len);
memcpy(value,
payload->sub_payload + payload_offset +
((key_len - 1) / ALIGN_LEN + 1) * ALIGN_LEN,
val_len);
payload_offset += sub_len;
NVMEV_DEBUG("sub-payload %d %d %d %d %s %s", payload->batch_head.attr[i].opcode,
key_len, val_len, sub_len, key, value);
__do_perform_kv_batched_io(kv_ftl, opcode, key, key_len, value, val_len);
}
NVMEV_DEBUG("finished kv_batch with %d sub-commands", sub_cmd_cnt);
if (paddr_list != NULL)
kunmap_atomic(paddr_list);
if (value != NULL)
kfree(value);
if (buffer != NULL)
kfree(buffer);
return 0;
}
static unsigned int kv_iter_open(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd, unsigned int *status)
{
int iter = 0;
bool flag = false;
for (iter = 1; iter <= 16; iter++) {
if (kv_ftl->iter_handle[iter] == NULL) {
flag = true;
break;
}
}
if (!flag)
return 1;
kv_ftl->iter_handle[iter] = kmalloc(sizeof(struct kv_iter_context), GFP_KERNEL);
kv_ftl->iter_handle[iter]->buf = kmalloc(32768, GFP_KERNEL);
kv_ftl->iter_handle[iter]->end = 0;
kv_ftl->iter_handle[iter]->byteswritten = 0;
kv_ftl->iter_handle[iter]->bufoffset = 0;
kv_ftl->iter_handle[iter]->current_pos = 0;
kv_ftl->iter_handle[iter]->bitmask = cmd.kv_iter_req.iter_bitmask;
kv_ftl->iter_handle[iter]->prefix = cmd.kv_iter_req.iter_val;
*status = 0;
return iter;
}
static unsigned int kv_iter_close(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd, unsigned int *status)
{
int iter = cmd.kv_iter_req.iter_handle;
if (kv_ftl->iter_handle[iter]) {
kfree(kv_ftl->iter_handle[iter]->buf);
kfree(kv_ftl->iter_handle[iter]);
kv_ftl->iter_handle[iter] = NULL;
}
*status = 0;
return 0;
}
static unsigned int kv_iter_read(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd,
unsigned int *status)
{
int iter = cmd.kv_iter_req.iter_handle;
struct kv_iter_context *handle = kv_ftl->iter_handle[iter];
int pos = 0, keylen = 16, buf_offset = 4, nr_keys = 0;
unsigned int key;
bool full = false, end = false;
size_t remaining, mem_offs = 0, offset;
int prp_offs = 0, prp2_offs = 0;
u64 paddr;
u64 *paddr_list = NULL;
if (handle == NULL) {
NVMEV_ERROR("Invalid Iterator Handle");
return 0;
}
pos = handle->current_pos;
while (pos < kv_ftl->hash_slots) {
if (kv_ftl->kv_mapping_table[pos].mem_offset != -1) {
memcpy(&key, kv_ftl->kv_mapping_table[pos].key, 4);
if ((key & handle->bitmask) == (handle->prefix & handle->bitmask)) {
NVMEV_DEBUG("found %s at %d", kv_ftl->kv_mapping_table[pos].key,
pos);
if ((buf_offset + 4 + keylen) > 1024) {
full = true;
break;
}
memcpy(handle->buf + buf_offset, &keylen, 4);
buf_offset += 4;
memcpy(handle->buf + buf_offset, kv_ftl->kv_mapping_table[pos].key,
keylen);
buf_offset += (keylen + 3) & (~3);
nr_keys++;
}
}
pos++;
if (pos == kv_ftl->hash_slots) {
end = true;
break;
}
}
memcpy(handle->buf, &nr_keys, 4);
NVMEV_DEBUG("Iterator read done, buf_offset %d, pos %d", buf_offset, pos);
handle->current_pos = pos;
/* Writing buffer to PRP */
remaining = buf_offset;
offset = 0;
while (remaining) {
size_t io_size;
void *vaddr;
mem_offs = 0;
prp_offs++;
if (prp_offs == 1) {
paddr = kv_io_cmd_value_prp(cmd, 1);
} else if (prp_offs == 2) {
paddr = kv_io_cmd_value_prp(cmd, 2);
if (remaining > PAGE_SIZE) {
paddr_list = kmap_atomic_pfn(PRP_PFN(paddr)) +
(paddr & PAGE_OFFSET_MASK);
paddr = paddr_list[prp2_offs++];
}
} else {
paddr = paddr_list[prp2_offs++];
}
vaddr = kmap_atomic_pfn(PRP_PFN(paddr));
io_size = min_t(size_t, remaining, PAGE_SIZE);
if (paddr & PAGE_OFFSET_MASK) {
mem_offs = paddr & PAGE_OFFSET_MASK;
if (io_size + mem_offs > PAGE_SIZE)
io_size = PAGE_SIZE - mem_offs;
}
NVMEV_DEBUG(
"Buffer transfer, length %lu from position %lu, io size: %ld, mem_off: %lu\n",
remaining, offset, io_size, mem_offs);
memcpy(vaddr + mem_offs, handle->buf + offset, io_size);
kunmap_atomic(vaddr);
remaining -= io_size;
offset += io_size;
}
if (paddr_list != NULL)
kunmap_atomic(paddr_list);
*status = 0;
if (end) {
*status = 0x393;
}
return buf_offset;
}
static unsigned int __do_perform_kv_iter_io(struct kv_ftl *kv_ftl, struct nvme_kv_command cmd,
unsigned int *status)
{
if (is_kv_iter_req_cmd(cmd.common.opcode)) {
if (cmd.kv_iter_req.option & ITER_OPTION_OPEN) {
return kv_iter_open(kv_ftl, cmd, status);
} else if (cmd.kv_iter_req.option & ITER_OPTION_CLOSE) {
return kv_iter_close(kv_ftl, cmd, status);
}
} else if (is_kv_iter_read_cmd(cmd.common.opcode)) {
return kv_iter_read(kv_ftl, cmd, status);
}
return 0;
}
bool kv_proc_nvme_io_cmd(struct nvmev_ns *ns, struct nvmev_request *req, struct nvmev_result *ret)
{
struct nvme_command *cmd = req->cmd;
switch (cmd->common.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
ret->nsecs_target = __schedule_io_units(
cmd->common.opcode, cmd->rw.slba,
__cmd_io_size((struct nvme_rw_command *)cmd), __get_wallclock());
break;
case nvme_cmd_flush:
ret->nsecs_target = __schedule_flush(req);
break;
case nvme_cmd_kv_store:
case nvme_cmd_kv_retrieve:
case nvme_cmd_kv_batch:
ret->nsecs_target = __schedule_io_units(
cmd->common.opcode, 0, cmd_value_length(*((struct nvme_kv_command *)cmd)),
__get_wallclock());
NVMEV_INFO("%d, %llu, %llu\n", cmd_value_length(*((struct nvme_kv_command *)cmd)),
__get_wallclock(), ret->nsecs_target);
break;
default:
NVMEV_ERROR("%s: command not implemented: %s (0x%x)\n", __func__,
nvme_opcode_string(cmd->common.opcode), cmd->common.opcode);
break;
}
return true;
}
bool kv_identify_nvme_io_cmd(struct nvmev_ns *ns, struct nvme_command cmd)
{
return is_kv_cmd(cmd.common.opcode);