-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate-player-stats.py
242 lines (202 loc) · 9.26 KB
/
update-player-stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pandas as pd
import plotnine as p9
from datetime import date
from get_game_info import get_df_game_record
# Utility functions
def get_player_stats(df, player, shortstaffed_games_list):
'''Calculate playing statistics of the specified player
'''
assert 'player_id' in df.columns
assert 'player_win_lose' in df.columns
assert 'level_up' in df.columns
assert 'is_dealer' in df.columns
assert player in df.player_id.to_list()
# subset rows of the specified player
df_player = df[df.player_id == player]
# cumulative levels up
lifetime_level = df_player.lifetime_level_after.max()
# subset rows that this player wins
df_player_winning = df_player[df_player.player_win_lose == 'win']
# calculate the winning rate
winning_rate = len(df_player_winning) / len(df_player)
# calculate the average levels up per winning game
if len(df_player_winning) > 0:
average_level_up = df_player_winning.level_up.mean()
else:
average_level_up = 0
# subset rows that this player is dealer
df_player_dealing = df_player[df_player.is_dealer == 'Yes']
# subset rows that this player is dealer and wins
df_player_dealing_winning = df_player[(df_player.is_dealer == 'Yes') &
(df_player.player_win_lose == 'win')]
# calculate the winning rate as dealer
if len(df_player_dealing) > 0:
winning_rate_as_dealer = len(df_player_dealing_winning) / len(df_player_dealing)
else:
winning_rate_as_dealer = 0
# calculate the number of occurrences of shortstaffed dealer team as dealer
dealing_games_list = df_player_dealing.game_id.tolist()
n_shortstaffed_games = len( list(set(shortstaffed_games_list) & set(dealing_games_list)) )
# subset rows that player is MVP
df_player_MVP = df_player[df_player.is_MVP == 'Yes']
# player_stats = [player,
# lifetime_level,
# winning_rate,
# average_level_up,
# len(df_player),
# len(df_player_MVP),
# len(df_player_dealing),
# n_shortstaffed_games,
# winning_rate_as_dealer]
# formatted version
player_stats = [player.replace('_', ' <br> '),
lifetime_level,
"{:.1%}".format(winning_rate),
"{:.2f}".format(average_level_up),
len(df_player),
len(df_player_MVP),
len(df_player_dealing),
n_shortstaffed_games,
"{:.1%}".format(winning_rate_as_dealer)]
return player_stats
def get_dealer_winning_rate_at_n_decks(df, n_decks):
'''calculate the dealer's winning rate of the specified n_decks
'''
assert 'n_decks' in df.columns
assert 'dealer_win_lose' in df.columns
assert 'game_id' in df.columns
df_n_decks = df[df.n_decks == n_decks]
if len(df_n_decks) > 0:
df_selected = df[(df.n_decks == n_decks) & (df.dealer_win_lose == 'win')]
winning_rate = df_selected.game_id.nunique() / df_n_decks.game_id.nunique()
return winning_rate
else:
return 'na'
def get_dealer_winning_rate_at_n_players(df, n_players):
'''calculate the dealer's winning rate of the specified n_players
'''
assert 'n_players' in df.columns
assert 'dealer_win_lose' in df.columns
assert 'game_id' in df.columns
df_n_decks = df[df.n_players == n_players]
if len(df_n_decks) > 0:
df_selected = df[(df.n_decks == n_decks) & (df.dealer_win_lose == 'win')]
winning_rate = df_selected.game_id.nunique() / df_n_decks.game_id.nunique()
return winning_rate
else:
return 'na'
def dealer_team_shortstaffed(df, game_id):
'''determine whether the dealer team has fewer members than expected
'''
assert 'game_id' in df.columns
assert 'n_players' in df.columns
assert 'on_dealer_team' in df.columns
df_current_game = df[df.game_id == game_id]
df_current_game.reset_index(inplace=True)
n_players = df_current_game.n_players[0]
expected_dealer_team_n = (n_players-n_players%2)/2
actual_dealer_team_n = df_current_game.groupby('on_dealer_team').describe().loc['Yes','game_id']['count']
return actual_dealer_team_n < expected_dealer_team_n
def get_games_dealer_team_shortstaffed(df):
'''get a list of game_id when the dealer team is shortstaffed
'''
assert 'game_id' in df.columns
assert 'n_players' in df.columns
assert 'on_dealer_team' in df.columns
games_dealer_team_shortstaffed = []
for game_id in df.game_id.unique():
if dealer_team_shortstaffed(df, game_id):
games_dealer_team_shortstaffed.append(game_id)
return games_dealer_team_shortstaffed
# # pull data from the Google spreadsheet
# spreadsheet_id = '1So3PBr9gV3I0LzApZOgJlQew2QjM1wAiWhR50rAnHRg'
# data = read_google_sheet(spreadsheet_id)
# # Reformat the data into a pandas dataframe
# df_raw = pd.DataFrame(data[1:], columns=data[0])
# # Add a column of date
# df_raw['date'] = df_raw.year + '-' + df_raw.month + '-' + df_raw.day
# df_raw.head()
# # change the data types of certain columns to integers for calculation
# df = df_raw.astype({'game_id': 'int64',
# 'level_rounds_before': 'int64',
# 'level_rounds_after': 'int64',
# 'score_goal': 'int64',
# 'n_players': 'int64',
# 'n_decks': 'int64',
# 'score': 'int64',
# 'level_up': 'int64',
# 'lifetime_level_before': 'int64',
# 'lifetime_level_after': 'int64',
# 'year': 'int64',
# 'month': 'int64',
# 'day': 'int64'})
df = get_df_game_record(force_remote=False)
# get a list of game_id when the dealer team is shortstaffed
shortstaffed_games_list = get_games_dealer_team_shortstaffed(df)
player_stats_data = []
for player in df.player_id.unique():
player_stats_data.append(get_player_stats(df, player, shortstaffed_games_list))
player_stats_df = pd.DataFrame(player_stats_data,
columns=['Player',
'Lifetime levels up',
'Winning rate',
'Average levels up',
'N_games played',
'N_games played as MVP',
'N_games as dealer',
'N_games short staffed as dealer',
'Winning rate as dealer'])
player_stats_df.sort_values(by=['Lifetime levels up', 'Winning rate', 'Average levels up'],
ascending=False, inplace=True)
player_stats_df.reset_index(inplace=True, drop=True)
player_stats_df['Rank'] = list(range(1, len(player_stats_df)+1))
player_stats_df = player_stats_df[['Rank'] + player_stats_df.columns[:-1].tolist()]
# player_stats_df
# update the markdown file in the gibhub pages folder
header_file = open('../snownontrace.github.io/player_stats_header.md', 'r')
lines = header_file.readlines()
# get today's date
today = date.today()
date_today = today.strftime("%Y-%m-%d")
with open('../snownontrace.github.io/player_stats.md', 'w') as the_file:
for line in lines[:5]:
the_file.write(line)
# update the date with the current date
the_file.write('date: ' + date_today + '\n')
for line in lines[6:16]:
the_file.write(line)
for i in range(len(player_stats_df)):
player_stats = [str(iii) for iii in player_stats_df.iloc[i,:].tolist()]
player_stats_line = '| ' + ' | '.join(player_stats) + ' |' + '\n'
the_file.write(player_stats_line)
for line in lines[-4:]:
the_file.write(line)
df_player_history = df[['player_id', 'lifetime_level_before']]
df_player_history.sort_values(by=['player_id', 'lifetime_level_before'], ascending=True, inplace=True)
# make game inex
game_index = []
for i in df_player_history.groupby('player_id').describe()['lifetime_level_before']['count']:
for j in range(int(i)):
game_index.append(j)
df_player_history['game_index'] = game_index
# df_player_history # show the data frame
# replace the underscore in player id with space
player_reformatted = [player.replace('_', ' ') for player in df_player_history.player_id]
df_player_history.loc[:, 'player_id'] = player_reformatted
# We can further customize the plot appearance by changing the themes
player_history_plot = (
p9.ggplot(data=df_player_history,
mapping=p9.aes(x='game_index',
y='lifetime_level_before'))
# + p9.geom_point(alpha=0.1)
+ p9.geom_line(color='blue')
+ p9.xlab("Number of games played")
+ p9.ylab("Cumulative levels up")
+ p9.theme_classic() # use alternative themes
+ p9.facet_wrap("player_id", ncol=3)
+ p9.theme(figure_size=(3, 4.5), dpi=300)
+ p9.theme(text=p9.element_text(size=7, family='Arial'))
+ p9.theme(axis_text_x = p9.element_text(color="grey", size=7, family='Arial'),
axis_text_y = p9.element_text(color="grey", size=7, family='Arial'))
)
player_history_plot.save('../snownontrace.github.io/assets/images/player_history_plot.png')