-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_aadiff.cu
380 lines (317 loc) · 9.72 KB
/
test_aadiff.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include "cuda.h"
#include "cuda_runtime.h"
#include "cublas_v2.h"
#include "cub/cub.cuh"
#include <vector>
#include <memory>
#include <string>
#include <exception>
#include <stdexcept>
#include <type_traits>
#include <thread>
#include <mutex>
#include "stdio.h"
#include <set>
#include <map>
#include <sstream>
#include <random>
#include <iostream>
#define M 8192
#define K 19456
#define N 14336
#define ITERATION 10
#define DTOR_THROW noexcept(false)
#define CUDA_CHECK(__cond) \
do { \
auto __err = (__cond); \
if (__err != cudaSuccess) { \
auto __msg = cudaGetErrorString(__err); \
throw std::runtime_error(std::string(__FILE__) \
+ ":" + std::to_string(__LINE__) + ": " \
+ #__cond + " failed with message : " + __msg \
+ " , code : " + std::to_string(__err)); \
} \
} while (0)
#define CUBLAS_CHECK(__cond) \
do { \
auto __err = (__cond); \
if (__err != CUBLAS_STATUS_SUCCESS) { \
throw std::runtime_error(std::string(__FILE__) \
+ ":" + std::to_string(__LINE__) + ": " \
+ #__cond + " failed with code : " \
+ std::to_string(__err)); \
} \
} while (0)
#define DISABLE_COPY_AND_ASSIGN(classname) \
private: \
classname(const classname&) = delete; \
classname(classname&&) = delete; \
classname& operator=(const classname&) = delete; \
classname& operator=(classname&&) = delete
struct DeviceGuard {
DISABLE_COPY_AND_ASSIGN(DeviceGuard);
public:
explicit DeviceGuard(int dev_id) {
CUDA_CHECK(cudaGetDevice(&dev_id_));
CUDA_CHECK(cudaSetDevice(dev_id));
}
~DeviceGuard() DTOR_THROW {
CUDA_CHECK(cudaSetDevice(dev_id_));
}
private:
int dev_id_;
};
struct CUDAResource {
DISABLE_COPY_AND_ASSIGN(CUDAResource);
public:
int dev_id;
cudaStream_t stream;
cublasHandle_t handle;
explicit CUDAResource(int dev_id) : dev_id(dev_id) {
DeviceGuard guard(dev_id);
CUDA_CHECK(cudaStreamCreate(&stream));
CUBLAS_CHECK(cublasCreate(&handle));
CUBLAS_CHECK(cublasSetStream(handle, stream));
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
}
~CUDAResource() DTOR_THROW {
SyncStream();
CUBLAS_CHECK(cublasDestroy(handle));
CUDA_CHECK(cudaStreamDestroy(stream));
}
void SyncStream() const {
CUDA_CHECK(cudaStreamSynchronize(stream));
}
};
class Matrix {
DISABLE_COPY_AND_ASSIGN(Matrix);
public:
Matrix(const CUDAResource &resource, const float *cpu_data, int height, int width) {
dev_id_ = resource.dev_id;
height_ = height;
width_ = width;
DeviceGuard guard(dev_id_);
size_t nbytes = sizeof(data_[0]) * height_ * width_;
resource.SyncStream();
CUDA_CHECK(cudaMalloc(&data_, nbytes));
if (cpu_data != nullptr) {
CUDA_CHECK(cudaMemcpyAsync(data_, cpu_data, nbytes, cudaMemcpyHostToDevice, resource.stream));
}
resource.SyncStream();
}
~Matrix() DTOR_THROW {
DeviceGuard guard(dev_id_);
CUDA_CHECK(cudaFree(data_));
}
void Matmul(const CUDAResource &resource, const Matrix &other, Matrix *z) const {
DeviceGuard guard(dev_id_);
if (width_ != other.height_) {
throw std::runtime_error("Invalid Argument: " + std::to_string(width_) + " vs " + std::to_string(other.height_));
}
if (height_ != z->height_) {
throw std::runtime_error("Invalid Argument: " + std::to_string(height_) + " vs " + std::to_string(z->height_));
}
if (other.width_ != z->width_) {
throw std::runtime_error("Invalid Argument: " + std::to_string(other.width_) + " vs " + std::to_string(z->width_));
}
const auto *x_data = data_;
const auto *y_data = other.data_;
int m = height_;
int k = width_;
int n = other.width_;
int lda = k;
int ldb = n;
int ldc = n;
using DType = typename std::remove_pointer<decltype(x_data)>::type;
DType alpha = 1, beta = 0;
CUBLAS_CHECK(cublasSgemmEx(
resource.handle,
CUBLAS_OP_N,
CUBLAS_OP_N,
n,
m,
k,
&alpha,
y_data,
CUDA_R_32F,
ldb,
x_data,
CUDA_R_32F,
lda,
&beta,
z->data_,
CUDA_R_32F,
ldc));
resource.SyncStream();
}
std::vector<float> ToCPU(const CUDAResource &resource) const {
DeviceGuard guard(dev_id_);
size_t nbytes = height_ * width_ * sizeof(data_[0]);
std::vector<float> out(height_ * width_);
resource.SyncStream();
CUDA_CHECK(cudaMemcpyAsync(out.data(), data_, nbytes, cudaMemcpyDeviceToHost, resource.stream));
resource.SyncStream();
return out;
}
private:
float *data_;
int height_;
int width_;
int dev_id_;
};
template <typename T>
bool IsEqual(const std::vector<T> &x, const std::vector<T> &y) {
if (x.size() != y.size()) return false;
bool is_equal = (std::memcmp(x.data(), y.data(), sizeof(T) * x.size()) == 0);
return is_equal;
}
void ThreadMain(std::reference_wrapper<const CUDAResource> resource, const float *x_data, const float *y_data,
int m, int k, int n, int iteration, std::vector<float> *out, int *has_aadiff) {
*has_aadiff = 0;
auto &res = resource.get();
Matrix x(res, x_data, m, k);
Matrix y(res, y_data, k, n);
Matrix z(res, nullptr, m, n);
auto compute = [&] {
x.Matmul(res, y, &z);
return z.ToCPU(res);
};
*out = compute();
for (int i = 1; i < iteration; ++i) {
auto tmp_out = compute();
if (!IsEqual(*out, tmp_out)) {
*has_aadiff = 1;
}
}
}
template <typename T>
std::vector<std::vector<int>> FindEqualGroup(const std::vector<std::vector<T>> &data) {
int n = static_cast<int>(data.size());
if (n == 0) return {};
std::map<int, std::set<int>> result;
std::set<int> left;
for (int i = 0; i < n; ++i) {
left.insert(i);
}
while (!left.empty()) {
auto beg = left.begin();
auto first_value = *beg;
result[first_value].insert(first_value);
left.erase(beg);
for (auto iter = left.begin(); iter != left.end(); ) {
bool is_equal = IsEqual(data[first_value], data[*iter]);
if (is_equal) {
result[first_value].insert(*iter);
iter = left.erase(iter);
} else {
++iter;
}
}
}
std::vector<std::vector<int>> group;
for (const auto &pair : result) {
group.emplace_back();
group.back().assign(pair.second.begin(), pair.second.end());
}
return group;
}
template <typename T>
std::string VectorToString(const std::vector<T> &data) {
std::stringstream ss;
ss << "[";
for (size_t i = 0; i < data.size(); ++i) {
if (i > 0) {
ss << ", ";
}
ss << data[i];
}
ss << "]";
return ss.str();
}
static unsigned int GetSeed() {
std::random_device rd;
return rd();
}
template <typename T, typename Generator>
void GenerateData(std::vector<T> *data, Generator generator) {
for (auto iter = data->begin(); iter != data->end(); ++iter) {
*iter = static_cast<T>(generator());
}
}
template <typename T>
std::vector<T> CPUMatmul(const T *x, const T *y, int m, int k, int n) {
std::vector<T> z(m * n, static_cast<T>(0));
for (int z_i = 0; z_i < m; ++z_i) {
for (int z_j = 0; z_j < n; ++z_j) {
auto &z_data = z[z_i * n + z_j];
for (int x_k = 0; x_k < k; ++x_k) {
auto &x_data = x[z_i * k + x_k];
auto &y_data = y[x_k * n + z_j];
z_data += (x_data * y_data);
}
}
}
return z;
}
void TestMain() {
int dev_cnt = -1;
int rt_ver = -1, driver_ver = -1;
CUDA_CHECK(cudaGetDeviceCount(&dev_cnt));
CUDA_CHECK(cudaRuntimeGetVersion(&rt_ver));
CUDA_CHECK(cudaDriverGetVersion(&driver_ver));
printf("Device Number : %d , Runtime Version : %d , Driver Version : %d\n", dev_cnt, rt_ver, driver_ver);
CUDA_CHECK(cudaSetDevice(0));
std::vector<std::unique_ptr<CUDAResource>> resources;
std::vector<std::vector<float>> outputs(dev_cnt);
for (int i = 0; i < dev_cnt; ++i) {
resources.emplace_back(new CUDAResource(i));
}
int m = M;
int k = K;
int n = N;
int iteration = ITERATION;
std::vector<float> x(m * k);
std::vector<float> y(k * n);
auto seed = GetSeed();
std::default_random_engine engine(seed);
std::normal_distribution<float> dist(0.0, 0.01);
auto generator = [&engine, &dist] { return dist(engine); };
GenerateData(&x, generator);
GenerateData(&y, generator);
std::vector<std::thread> threads;
std::vector<int> has_aadiff(dev_cnt, 0);
for (int i = 0; i < dev_cnt; ++i) {
auto &resource = *(resources[i]);
threads.emplace_back(ThreadMain, std::cref(resource), x.data(), y.data(), m, k, n, iteration, &(outputs[i]), &(has_aadiff[i]));
}
for (auto &th : threads) {
th.join();
}
std::vector<int> aadiff_devs;
for (int i = 0; i < dev_cnt; ++i) {
if (has_aadiff[i]) {
aadiff_devs.push_back(i);
}
}
auto group = FindEqualGroup(outputs);
std::string group_str;
size_t i = 0;
for (const auto &g : group) {
if (i + 1 != group.size()) {
group_str += " | ";
}
group_str += "Group " + std::to_string(i) + " : ";
group_str += VectorToString(g);
++i;
}
if (group.size() <= 1 && aadiff_devs.empty()) {
group_str = "NoAADiff : " + group_str;
} else {
group_str = "HasAADiff : " + VectorToString(aadiff_devs) + " || " + group_str;
}
printf("%s\n", group_str.c_str());
}
int main() {
TestMain();
return 0;
}