-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathastro.coords.js
314 lines (276 loc) · 10.5 KB
/
astro.coords.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
astro.coords.js - basic coordinate transforms
*/
(function () {
// Define any dependencies that are required for this package to run
var dependencies = ['dates'];
// Create the main function
function init(astrojs) {
this.d2r = Math.PI/180;
this.r2d = 180/Math.PI; // degrees to radians
var d2r = this.d2r;
var r2d = this.r2d;
var twopi = 2*Math.PI;
// Input is Julian Date
// Uses method defined in Practical Astronomy (4th ed) by Peter Duffet-Smith and Jonathan Zwart
this.meanObliquity = function(JD){
var T,T2,T3;
if(!JD) return { status: -1 };
T = (JD-2451545.0)/36525; // centuries since 2451545.0 (2000 January 1.5)
T2 = T*T;
T3 = T2*T;
return 23.4392917 - 0.0130041667*T - 0.00000016667*T2 + 0.0000005027778*T3;
}
// Take input in decimal degrees, decimal Sidereal Time and decimal latitude
// Uses method defined in Practical Astronomy (4th ed) by Peter Duffet-Smith and Jonathan Zwart
this.ecliptic2azel = function(l,b,LST,lat){
var sl,cl,sb,cb,v,e,se,Cprime,s,cST,sST,B,r,sphi,cphi,A,w,theta,psi;
if(!LST || !lat) return { status: -1 };
l *= d2r;
b *= d2r;
sl = Math.sin(l);
cl = Math.cos(l);
sb = Math.sin(b);
cb = Math.cos(b);
v = [cl*cb,sl*cb,sb];
e = this.meanObliquity();
e *= d2r;
ce = Math.cos(e);
se = Math.sin(e);
Cprime = [[1.0,0.0,0.0],[0.0,ce,-se],[0.0,se,ce]];
s = this.vectorMultiply(Cprime,v);
ST = LST*15*d2r;
cST = Math.cos(ST);
sST = Math.sin(ST);
B = [[cST,sST,0],[sST,-cST,0],[0,0,1]];
r = this.vectorMultiply(B,s);
lat *= d2r;
sphi = Math.sin(lat);
cphi = Math.cos(lat);
A = [[-sphi,0,cphi],[0,-1,0],[cphi,0,sphi]];
w = this.vectorMultiply(A,r);
theta = Math.atan2(w[1],w[0]);
psi = Math.asin(w[2]);
return {az:theta/d2r,el:psi/d2r}
}
/*
// compute horizon coordinates from utc, ra, dec
// ra, dec, lat, lon in decimal degrees
// utc is a Date object
// results returned in hrz_altitude, hrz_azimuth
this.radec2azel = function(ra, dec, lat, lon, UTC, LST){
// compute hour angle in degrees
if(typeof LST==="undefined") LST = astrojs.dates.getLST(UTC,lon);
var ha = LST*15 - ra;
if (ha < 0) ha += 360;
// convert degrees to radians
ha *= this.d2r;
dec *= this.d2r;
// Fudge to fix divide by zero error at poles
// Convert to radians
lat = ((Math.abs(lat) == 90.0) ? (lat-0.00001) : lat)*this.d2r;
// compute altitude in radians
var alt = Math.asin(Math.sin(dec)*Math.sin(lat) + Math.cos(dec)*Math.cos(lat)*Math.cos(ha));
// compute azimuth in radians
// divide by zero error at poles or if alt = 90 deg
var az = Math.acos((Math.sin(dec) - Math.sin(alt)*Math.sin(lat))/(Math.cos(alt)*Math.cos(lat)));
// convert radians to degrees
var hrz_altitude = alt/this.d2r;
var hrz_azimuth = az/this.d2r;
// choose hemisphere
if (Math.sin(ha) > 0) hrz_azimuth = 360 - hrz_azimuth;
return {alt: hrz_altitude, az: hrz_azimuth};
}*/
// Take input in decimal degrees
this.ecliptic2radec = function(l,b,JD){
var e,sl,cl,sb,cb,tb,se,ce,ra,dec;
e = this.meanObliquity(JD);
l *= d2r;
b *= d2r;
e *= d2r;
sl = Math.sin(l);
cl = Math.cos(l);
sb = Math.sin(b);
cb = Math.cos(b);
tb = Math.tan(b);
se = Math.sin(e);
ce = Math.cos(e);
ra = Math.atan2((sl*ce - tb*se),(cl));
dec = Math.asin(sb*ce+cb*se*sl);
return { ra:ra/d2r, dec:dec/d2r };
}
// Input is a two element position (degrees)
// Output is a two element position (degrees)
function Transform(p, rot){
p[0] *= d2r;
p[1] *= d2r;
var cp1 = Math.cos(p[1]);
var m = [Math.cos(p[0])*cp1, Math.sin(p[0])*cp1, Math.sin(p[1])];
var s = [m[0]*rot[0] + m[1]*rot[1] + m[2]*rot[2], m[0]*rot[3] + m[1]*rot[4] + m[2]*rot[5], m[0]*rot[6] + m[1]*rot[7] + m[2]*rot[8] ];
var r = Math.sqrt(s[0]*s[0] + s[1]*s[1] + s[2]*s[2]);
var b = Math.asin(s[2]/r); // Declination in range -90 -> +90
var cb = Math.cos(b);
var a = Math.atan2(((s[1]/r)/cb),((s[0]/r)/cb));
if (a < 0) a += twopi;
return [a*r2d,b*r2d];
}
this.fk42fk5 = function(ra,dec){
// Convert from B1950 -> J2000
pos = Transform ([ra,dec], [0.9999256782, -0.0111820611, -0.0048579477, 0.0111820610, 0.9999374784, -0.0000271765, 0.0048579479, -0.0000271474, 0.9999881997])
return {ra:(pos[0]), dec:(pos[1])};
}
this.fk52fk4 = function(ra,dec){
// Convert J2000->B1950
pos = Transform([ra,dec], [0.9999256795, 0.0111814828, 0.0048590039, -0.0111814828, 0.9999374849, -0.0000271771, -0.0048590040, -0.0000271557, 0.9999881946]);
return {ra:(pos[0]), dec:(pos[1])};
}
this.gal2eq = function(l,b,epoch){
// Convert Galactic -> J2000
// Using celestial values
//var pos = Transform([l,b], [-0.054875539396, 0.494109453628, -0.867666135683, -0.873437104728, -0.444829594298, -0.198076389613, -0.48383499177, 0.7469822487, 0.455983794521]);
// Using SLALIB values
if(epoch == "1950" || epoch == "B1950" || epoch == "FK4") var pos = Transform([l,b], [-0.066988739415, 0.492728466075, -0.867600811151, -0.872755765852, -0.450346958020, -0.188374601723, -0.483538914632, 0.744584633283, 0.460199784784])
else var pos = Transform([l,b], [-0.054875539726, 0.494109453312, -0.867666135858, -0.873437108010, -0.444829589425, -0.198076386122, -0.483834985808, 0.746982251810, 0.455983795705]);
return {ra:(pos[0]), dec:(pos[1])};
}
this.eq2gal = function(ra,dec,epoch){
var pos = [ra,dec]
// Convert from B1950 -> J2000
if(epoch == "1950" || epoch == "B1950" || epoch == "FK4") pos = Transform (pos, [0.9999256782, -0.0111820611, -0.0048579477, 0.0111820610, 0.9999374784, -0.0000271765, 0.0048579479, -0.0000271474, 0.9999881997])
// Spherical Astronomy by Green, equation 14.55, page 355
// Convert J2000 -> Galactic
pos = Transform(pos, [-0.054876, -0.873437, -0.483835, 0.494109, -0.444830, 0.746982, -0.867666, -0.198076, 0.455984]);
return {l:pos[0], b:pos[1]};
}
// Coordinate based functions
// Convert Ra/Dec (1950 or 2000) to Galactic coordinates
this.equatorial2galactic = function(ra, dec, epoch){
var OB = 23.4333334*d2r;
dec *= d2r;
ra *= d2r;
var a = (epoch && (epoch == "1950" || epoch == "B1950" || epoch == "FK4")) ? 27.4 : 27.128251; // The RA of the North Galactic Pole
var d = (epoch && (epoch == "1950" || epoch == "B1950" || epoch == "FK4")) ? 192.25 : 192.859481; // The declination of the North Galactic Pole
var l = (epoch && (epoch == "1950" || epoch == "B1950" || epoch == "FK4")) ? 33.0 : 32.931918; // The ascending node of the Galactic plane on the equator
var sdec = Math.sin(dec);
var cdec = Math.cos(dec);
var sa = Math.sin(a*d2r);
var ca = Math.cos(a*d2r)
var GT = Math.asin(cdec*ca*Math.cos(ra-d*d2r)+sdec*sa);
var GL = Math.atan((sdec-Math.sin(GT)*sa)/(cdec*Math.sin(ra- d*d2r)*ca))/d2r;
var TP = sdec-Math.sin(GT)*sa;
var BT = cdec*Math.sin(ra-d*d2r)*ca;
if(BT<0) GL=GL+180;
else {
if (TP<0) GL=GL+360;
}
GL = GL + l;
if (GL>360) GL = GL - 360;
var LG=Math.floor(GL);
var LM=Math.floor((GL - Math.floor(GL)) * 60);
var LS=((GL -Math.floor(GL)) * 60 - LM) * 60;
var GT=GT/d2r;
var D = Math.abs(GT);
if (GT > 0) var BG=Math.floor(D);
else var BG=(-1)*Math.floor(D);
var BM=Math.floor((D - Math.floor(D)) * 60);
var BS = ((D - Math.floor(D)) * 60 - BM) * 60;
if (GT<0) {
BM=-BM;
BS=-BS;
}
return { l: GL, b: GT };
}
this.galactic2equatorial = function(l, b, epoch){
// NGP = 12h51m26.282s +27°07′42.01″ (J2000) http://adsabs.harvard.edu/abs/2004ApJ...616..872R (Appendix A)
var fk4 = (epoch && (epoch == "1950" || epoch == "B1950" || epoch == "FK4")) ? true : false;
var NGP_a = (fk4) ? 27.4 : 27.1283361; // The RA of the North Galactic Pole
var NGP_d = (fk4) ? 192.25 : 192.859481; // The declination of the North Galactic Pole
var AN_l = (fk4) ? 33.0 : 32.9319; // The ascending node of the Galactic plane on the equator
l *= d2r;
b *= d2r;
var LAL_LGAL = AN_l*d2r;
var LAL_ALPHAGAL = NGP_d*d2r;
var LAL_DELTAGAL = NGP_a*d2r;
var sDGal = Math.sin(LAL_DELTAGAL);
var cDGal = Math.cos(LAL_DELTAGAL);
l = l-LAL_LGAL;
var sB = Math.sin(b);
var cB = Math.cos(b);
var sL = Math.sin(l);
var cL = Math.cos(l);
/* Compute components. */
var sinD = cB*cDGal*sL + sB*sDGal;
var sinA = cB*cL;
var cosA = sB*cDGal - cB*sL*sDGal;
/* Compute final results. */
var delta = Math.asin(sinD)*r2d;
var alpha = (Math.atan2( sinA, cosA ))*r2d + NGP_d;
alpha = alpha%360.0;
return {ra:alpha,dec:delta};
}
// Returns [x, y (,elevation)]
this.ecliptic2xy = function(l,b,wide,tall,LST,fullsky){
var pos;
if(typeof fullsky!=="boolean") fullsky = false;
if(typeof LST=="undefined") return { status: -1 };
if(fullsky){
pos = this.ecliptic2radec(l,b);
return this.radec2xy(pos.ra,pos.dec);
}else{
pos = this.ecliptic2azel(l,b,LST);
var el = pos.el;
pos = this.azel2xy(pos.az-this.az_off,pos.el,wide,tall);
pos.el = el;
return pos;
}
return 0;
}
// Returns [x, y (,elevation)]
this.radec2xy = function(ra,dec,wide,tall,projection,az_off){
var x,y;
if(typeof az_off!=="number") az_off = 0;
if(projection == "mollweide"){
var thetap = Math.abs(dec)*d2r;
var dtheta;
var pisindec = Math.PI*Math.sin(Math.abs(dec)*d2r);
// Now iterate to correct answer
for(var i = 0; i < 20 ; i++){
dtheta = -(thetap + Math.sin(thetap) - pisindec)/(1+Math.cos(thetap));
thetap += dtheta;
if(dtheta < 1e-4) break;
}
var normra = (ra+az_off)%360 - 180;
var outside = false;
x = -(2/Math.PI)*(normra*d2r)*Math.cos(thetap/2)*tall/2 + wide/2;
if(x > wide) outside = true;
var sign = (dec >= 0) ? 1 : -1;
y = -sign*Math.sin(thetap/2)*tall/2 + tall/2;
var coords = this.coord2horizon(ra, dec);
return {x:(outside ? -100 : x%wide),y:y,el:coords[0]};
}else if(projection == "planechart"){
var normra = (ra+az_off)%360-180;
x = -(normra/360)*tall*2 + wide/2;
y = -(dec/180)*tall+ tall/2;
if(x > wide) outside = true;
var coords = this.coord2horizon(ra, dec);
return {x:(outside ? -100 : x%wide),y:y,el:coords[0]};
}else{
var coords = this.coord2horizon(ra, dec);
// Only return coordinates above the horizon
if(coords[0] > 0){
pos = this.azel2xy(coords[1]-az_off,coords[0],wide,tall);
return {x:pos.x,y:pos.y,az:coords[1],el:coords[0]};
}
}
return 0;
}
return this;
}
// Register the package with the core
astrojs.registerPackage({
init: init,
dependencies: dependencies,
name: 'coords',
version: '0.1'
});
})(astrojs);